Document Type

Article

Publication Date

6-1-2010

Abstract

The Boundary Layer Evolution (BLE) missions of the International H2O Project (IHOP_2002) were designed to provide comprehensive observations of the distribution of water vapor in the quiescent boundary layer and its evolution during the early morning. The case study discussed in this paper presents detailed observations of the development of the boundary layer from before sunrise through to the period of growth of the mature convective boundary layer (CBL) during the 14 June 2002 BLE mission. The large number of remote sensing platforms, including the multiple instruments collocated at the Homestead Profiling Site, provided a detailed set of measurements of the growth and structure of the CBL. The observations describe the classic evolution of a daytime CBL, beginning with a shallow nocturnal boundary layer (NBL) below the remnants of the previous day's mixed layer, or residual layer. The vertical distribution of humidity in these layers during the early morning was affected by advection of dry air and by gravity waves. About an hour after sunrise a CBL developed, and gradually deepened with time as it mixed out the NBL and residual layer. The growth of the top of the CBL was particularly well observed because of the strong vertical gradients in temperature, humidity, and aerosol concentration. As the CBL deepened and the average CBL wind speed decreased, the mode of convective organization evolved from horizontal convective rolls to open-celled convection. A unique set of detailed measurements of the structure of the open cells was obtained from multiple instruments including the Doppler-on-Wheels radar, the Mobile Integrated Profiling System wind profiler, and the Scanning Raman lidar. They showed the relationship between open cells, thermals, mantle echoes, and the CBL top. © 2010 American Meteorological Society.

DOI

10.1175/2010MWR3200.1

Comments

© Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.

Included in

Engineering Commons

Share

COinS