1998

On nonnegative operators and fully cyclic peripheral spectrum

K. H. Foerster
foerster@math.tu-berlin.de

B. Nagy
bnagy@math.bme.hu

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1011

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
ON NONNEGATIVE OPERATORS AND FULLY CYCLIC PERIPHERAL SPECTRUM *

K.-H. FÖRSTER† AND B. NAGY‡

Dedicated to Hans Schneider on the occasion of his seventieth birthday

Abstract. In this note the properties of the peripheral spectrum of a nonnegative linear operator A (for which the spectral radius is a pole of its resolvent) in a complex Banach lattice are studied. It is shown, e.g., that the peripheral spectrum of a natural quotient operator is always fully cyclic. We describe when the nonnegative eigenvectors corresponding to the spectral radius r span the kernel $N(r - A)$. Finally, we apply our results to the case of a nonnegative matrix, and show that they sharpen earlier results by B.-S. Tam [Tamkang J. Math. 21:65-70, 1990] on such matrices and full cyclicity of the peripheral spectrum.

AMS subject classifications. 47B65, 47A10, 15A48

Key words. Banach lattice, lattice ideal, nonnegative operator, peripheral spectrum, fully cyclic, nonnegative matrix

1. Introduction. It follows from results of H.H. Schaefer [6, I.2.6 and V.4.6], that in the finite dimensional case \mathbb{C}^n and in certain Banach function lattices a nonnegative operator A has a fully cyclic peripheral point spectrum iff for all $\lambda \in \mathbb{C}$ with $|\lambda| = r(A)$

$$x \in N(\lambda A) \implies \|x\| \in N(r(A) A);$$

here $r(A)$ denotes the spectral radius of A; see also B.-S. Tam [8, Lemma 2.1].

In this note we consider nonnegative operators A in a Banach lattice for which the spectral radius $r(A)$ is a pole of its resolvent. We give necessary and sufficient conditions that for a given $\lambda \in \mathbb{C}$ with $|\lambda| = r(A)$ the inclusion $\{x \in N(\lambda A) \subseteq N(r(A) A)\}$ holds; in particular, we give necessary and sufficient conditions that $N(r(A) A)$ has a basis of nonnegative eigenvectors, and is a sublattice, respectively.

As examples show (see [8, Example 2.7]), the inclusion above is, even in the matrix case, not only a property of the spectrum and the associated directed graph of A. This will be very clear from Theorem 3.5. On the other hand, Theorem 4.2 in the matrix case and under the assumption that the nonnegative vectors in $N(r(A) A)$ span this kernel will show that the property of $N(r(A) A)$ being a sublattice can be characterized by properties of the reduced and of the singular graphs of A.

The main method of the investigation is the systematic application of an idea going back to Lotz and Schaefer (cf. [6]), and successfully developed by Greiner [2], [4]. The closed lattice ideals I_0 and I_1, defined below in terms of the Laurent expansion

*Received by the editors on 27 November 1997. Accepted for publication on 5 February 1998. Handling Editor: Daniel Hershkowitz
†Department of Mathematics, Technical University Berlin, Sekr. MA 6-4, Strasse des 17. Juni 135, D-10623 Berlin, Germany (foerster@math.tu-berlin.de)
‡Department of Analysis, Institute of Mathematics, Technical University Budapest, H-1521 Budapest, Hungary (bnagy@math.bme.hu)
of the resolvent of A around the spectral radius, their quotient I_b and the restrictions of (or the induced operator by) A are the most important technical means of the study, and a number of the results presented here find their natural formulation in this terminology.

In Section 4 we compare the results of Section 3 on nonnegative operators in Banach lattices with those of B.-S. Tam [8] on nonnegative matrices. One of the main results here is Theorem 4.2, which shows that for a nonnegative square matrix A the kernel $N(r \Leftrightarrow A_1)$ for the restriction A_1 of A to the lattice ideal I_1 is a sublattice if there does not exist a (strongly connected equivalence) class of A having access to two different distinguished basic classes (as expressed in the already standard graph theoretic terminology). The results of Section 4 sharpen the main results of Tam [8, Theorems 2.4 and 2.5] on matrices with fully cyclic peripheral spectrum.

2. Definitions and Preliminaries. In the following A denotes a nonnegative operator in a complex Banach lattice E. We assume that its spectral radius $r = r(A)$ is a pole of order $p \ (\geq 1)$ of its resolvent $R(\cdot, A)$, i.e., we have for some $\delta > 0$ and operators $Q_k \ (k = \leftrightarrow p, \leftrightarrow p + 1, \ldots)$ the Laurent expansion

$$R(\lambda, A) = \sum_{k=-p}^{\infty} (\lambda \Leftrightarrow r)^k Q_k \quad \text{if} \quad 0 < |\lambda \Leftrightarrow r| < \delta.$$

Note that Q_{-p} is nonnegative, since A is nonnegative. Following G. Greiner [2], [4, Chapters II III and C III], we define

$$I_1 = \{ x \in E : (Q_{-p}|x| = \ldots = Q_{-2}|x| = r)Q_{-1}|x| = 0 \}$$

(hence $I_1 = E$ if $p = 1$), and

$$I_b = \{ x \in E : Q_{-1}|x| = 0 \}.$$

Note that I_b can be trivial. Then we have (see [4, p. 174 and p. 303]) that I_1 and I_b are closed ideals of E, and they are invariant under A and $Q_k \ (k = \leftrightarrow p, \leftrightarrow p + 1, \ldots)$. If A_1 and A_b denote the restrictions of A to I_1 and I_b, respectively, then

$$r(A_1) = r(A) \quad \text{is a pole of} \quad R(\cdot, A_1) \quad \text{of order 1;}$$

$$r(A_b) < r(A), \quad \text{here we set} \quad r(A_0) = \Leftrightarrow \infty \quad \text{if} \quad I_b = \{ 0 \}.$$

Since $I_b \subsetneq I_1$, the quotient space $I_b = I_1/I_b$ is well-defined and is a Banach lattice. Further, A_1 induces uniquely a nonnegative operator A_b in I_b such that $q_bA_1 = A_bq_b$, where q_b denotes the quotient map $I_1 \to I_1/I_b$. Then (see [4, p. 174 and p. 303]) $r(A_b) = r(A_1) = r(A) = r$, r is a pole of order 1 of $R(\cdot, A_b)$, and the residuum of $R(\cdot, A_b)$ at r (which is induced by Q_{-1} in I_b) is strictly positive in the sense that the zero element is the only nonnegative element in I_b which it maps to the zero element.

Since r is a pole of order 1 of $R(\cdot, A_b)$, the associated residuum is a projection with kernel $R(r \Leftrightarrow A_b) = \text{range of } r \Leftrightarrow A_b$. Therefore $R(r \Leftrightarrow A_b)$ cannot contain any nonzero element y of I_b for which either y or $\Leftrightarrow y$ is nonnegative.
Let J be the closed ideal of I_h generated by $N(r \Leftrightarrow A_b)$. J is A_b-invariant, since $N(r \Leftrightarrow A_b)$ is A_b-invariant. Let $A_i = A_b \mid J$ (i.e. the restriction of A_b to J). Further, let $I_j = I_h / J$ and $A_j = A_b / J$ (i.e. the operator induced by A_b in I_j). We set $r(A_j) = \infty$ if $I_j = \{0\}$.

The important basic connections between different kernels and spectral radii of the operators defined above will be collected in the proposition below. The following useful lemma, which is not new, will be applied in the proof of the proposition and several times at other places of this note.

Lemma 2.1. Let T be a linear map in a vector space V and let M be a T-invariant linear submanifold of V. Let TM denote the restriction of T to M, let T/M denote the linear map induced by T in the quotient space V/M, and let $q_M : V \to V/M$ denote the quotient map. Then the following hold.

(I) If T/M is bijective, then q_M maps the kernel $N(T)$ bijectively onto $N(T/M)$.

(II) If T/M is injective, then $N(T) = N(T/M)$.

Proof. (I) Since $q_M T = (T/M)q_M$, the quotient map q_M maps $N(T)$ into $N(T/M)$. Let $z \in N(T/M)$. Take $v \in V$ such that $q_M(v) = z$, then $q_M(Tv) = T/M z = 0$, i.e. $Tv \in M$. Since T/M is surjective, we have $Tv = (T/M)w$ for some $w \in M \subset V$. Thus $u = v \Leftrightarrow w \in N(T)$ and $q_M(u) = q_M(v) = z$. If $u \in N(T)$ satisfies $q_M(u) = 0$, then $u \in M$ and $(T/M)u = 0$. Since T/M is injective, we obtain $u = 0$.

(II) Clearly we have $N(T/M) \subset N(T)$. Let $u \in N(T)$. Then $T/M q_M(u) = q_M(Tu) = 0$, and therefore $q_M(u) = 0$, since T/M is injective. Thus $u \in M \cap N(T) = N(T/M)$.

Proposition 2.2. Let the assumptions and notations preceding Lemma 2.1 hold. Then the following hold.

(I) $r(A) = r(A_1) = r(A_b) = r(A_i) > \max\{r(A_j), r(A_b)\}$, and $r(A)$ is a pole of order 1 of $R(r, A_1)$, $R(r, A_b)$ and $R(r, A_i)$, respectively.

(II) For all $\lambda \in \mathbb{C}$ with $|\lambda| = r(A) = r$ we have $N(\lambda \Leftrightarrow A) \supseteq N(\lambda \Leftrightarrow A_1) = N(\lambda \Leftrightarrow A_i)$, q_M maps $N(\lambda \Leftrightarrow A)$ bijectively onto $N(\lambda \Leftrightarrow A_1)$, $\dim N(r \Leftrightarrow A_1) = \dim N(\lambda \Leftrightarrow A_1) = \dim N(\lambda \Leftrightarrow A_i)$, and $\{|z| : z \in N(\lambda \Leftrightarrow A_b)\} \subset N(r \Leftrightarrow A_b)$. It follows that $N(r \Leftrightarrow A)$ is a sublattice of I_h.

Proof. (I) As seen above, the residuum $Q_{h, -1}$ of $R(r, A_b)$ at r is strictly positive. Then its restriction $Q_{h, -1}$ to J is also strictly positive (note that $\{0\} \neq N(r \Leftrightarrow A_b) \subset J$). This implies the three equalities. Since $R(Q_{h, -1}) = N(r \Leftrightarrow A_b) \subset J$, it follows that $R(r, A_j)$ is holomorphic at r. Therefore $r(A_j) < r(A)$, since A_j is a nonnegative operator in the Banach lattice I_j [3, Proposition 4.1.1.i]. Note that we have defined $r(A_j) = \infty$ if $I_j = \{0\}$.

(II) The first inclusion is evident. For the second statement we apply Lemma 2.1 (II) with $V = I_h$, $M = J$ and $T = \lambda \Leftrightarrow A_b$. Note that $T/M = \lambda \Leftrightarrow A_j$ is injective, since $r(A_j) < r(A) = |\lambda|$. The third statement follows from Lemma 2.1 (I) if we set $V = I_1$, $M = I_0$ and $T = \lambda \Leftrightarrow A_1$. Note that $T/M = \lambda \Leftrightarrow A_b$ is bijective, since $r(A_0) < r(A) = |\lambda|$. The equality $\dim N(\lambda \Leftrightarrow A_1) = \dim N(\lambda \Leftrightarrow A_i) = \dim N(\lambda \Leftrightarrow A)$ is now evident. We shall prove $\dim N(r \Leftrightarrow A_1) \geq \dim N(r \Leftrightarrow A_i)$, which needs a proof only if $m = \dim N(r \Leftrightarrow A_1) < \infty$. By [4, C-III, Lemma 3.13], the ideal J is the mutually orthogonal sum of $m A_i$-invariant ideals $J_k (k = 1, \ldots, m)$, the restrictions.
$A_k = A_k[J_k]$ are irreducible, and $r(A_{ik}) = r(A)$ is a pole of $R(\lambda, A_{ik})$ ($k = 1, \ldots, m$). The eigenspaces $N(r \Leftrightarrow A_{ik})$ are one-dimensional; see [6, V. §5]. By [6, Corollary to Theorem V.5.4], $\dim N(\lambda \Leftrightarrow A_{ik}) \leq 1$. A_i is the direct sum of the restrictions A_{ik}. Then $N(\lambda \Leftrightarrow A_h)$ is the direct sum of the $N(\lambda \Leftrightarrow A_{ik})$ ($k = 1, \ldots, m$). Therefore $\dim N(\lambda \Leftrightarrow A_1) \leq m = \dim N(r \Leftrightarrow A_0)$. For the proof of the next statement take $z \in N(\lambda \Leftrightarrow A_h)$. Let $y = (r \Leftrightarrow A_h)[z]$. Then $y \leq r[z] \Leftrightarrow |A_h z| \leq |(\lambda \Leftrightarrow A_h)z| = 0$. By a remark preceding Lemma 2.1, then $y = 0$.

3. Results and Proofs. We shall always assume that A is a nonnegative linear operator in a Banach lattice E, and its spectral radius is a pole of its resolvent.

We shall freely use the concepts and notations of Section 2. The next lemma is crucial for the main results of this note.

Lemma 3.1. Let $|\lambda| = r(A) = r$. For each $z \in N(\lambda \Leftrightarrow A_h)$ there exists a unique nonnegative $w \in N(r \Leftrightarrow A_1)$ such that $q_\lambda(w) = |z|$; for the unique $u \in N(\lambda \Leftrightarrow A_1)$ satisfying $q_\lambda(u) = |z|$ it follows that $q_\lambda(w) = q_\lambda(|u|)$ and $w \geq |u|$.

Proof. Let $z \in N(\lambda \Leftrightarrow A_h)$. By Proposition 2.2(II), there exists a unique $u \in N(\lambda \Leftrightarrow A_1)$ with $q_\lambda(u) = z$. Proposition 2.2(II) implies $z \in N(r \Leftrightarrow A_h)$. Since q_λ is a lattice homomorphism, we get $q_\lambda((r \Leftrightarrow A_1)[u]) = (r \Leftrightarrow A_h)q_\lambda([u]) = (r \Leftrightarrow A_h)[|u|] = 0$, i.e. $(r \Leftrightarrow A_1)[|u|] = 0$. Therefore, there exists a unique nonnegative $u_0 \in I_0$ such that $(r \Leftrightarrow A_1)u_0 = r \Leftrightarrow A_1)[|u|] = 0$. Then $r \Leftrightarrow A_0$ has a nonnegative inverse. Then $w = |u| + u_0$ is a vector we are looking for. If $v \in I_1$ satisfies $q_\lambda(v) = q_\lambda(|u|)$, then $|u| + u_0 \Leftrightarrow v \in I_0$. If further $v \in N(r \Leftrightarrow A_1)$, then $|u| + u_0 \Leftrightarrow v \in I_0 \cap N(r \Leftrightarrow A_1) = N(r \Leftrightarrow A_0)$. But $r \Leftrightarrow A_0$ is injective, therefore $v = |u| + u_0 = w$, i.e. w is unique as stated.

Proposition 3.2. Under our general assumptions the following hold.

(I) $N(r \Leftrightarrow A) \cap E_+ \subset N(r \Leftrightarrow A_1)$.

(II) $\operatorname{span}(N(r \Leftrightarrow A) \cap E_+) = N(r \Leftrightarrow A_1)$.

(III) the nonnegative eigenvectors of A corresponding to r span the eigenspace $N(r \Leftrightarrow A)$ iff $N(r \Leftrightarrow A) \subset I_1$ iff $N(r \Leftrightarrow A) = N(r \Leftrightarrow A_1)$.

(IV) if $N(r \Leftrightarrow A_1)$ is finite dimensional, then $N(r \Leftrightarrow A_1)$ has a basis of nonnegative eigenvectors of A_1 corresponding to r.

Proof. (I) $u \in N(r \Leftrightarrow A)$ is equivalent to $R(\lambda, A)u = (\lambda \Leftrightarrow r)^{-1}u$ if $0 < |\lambda| < r < \delta$ for some $\delta > 0$. Therefore $u \in N(r \Leftrightarrow A) \cap E_+$ implies $u \in \{x \in E : Q^{-1}x = 0\} = I_1$.

(II) Let $u \in N(r \Leftrightarrow A_1)$. Then its real and its imaginary parts belong to $N(r \Leftrightarrow A_1)$. Therefore we assume w.l.o.g. that u is real. Choose w as in Lemma 3.1. Then $u = \frac{1}{\lambda}(w + u) = \frac{1}{\lambda}(w \Leftrightarrow u)$, and $u \Leftrightarrow u \in N(r \Leftrightarrow A_1)$.

(III) The first part follows from $N(r \Leftrightarrow A_1) = N(r \Leftrightarrow A) \cap I_1$ and (II), the second part is clear.

(IV) follows simply from (II).

Remark 3.3. In connection with (III) and (IV) recall that U.G. Rothblum [5] proved that in the case $\dim E < \infty$ the generalized eigenspace $N((r \Leftrightarrow A)^p)$ (where p is the order of the pole r) always has a basis of nonnegative vectors. However, [1], Example 18 shows that in the general case (dim $E = \infty$) the corresponding statement can be false even if $p = 2$ and $\dim N((r \Leftrightarrow A)^2) = 2$.

Theorem 3.4. Let the general assumptions hold. The following assertions are
equivalent.
(I) \(N(r \Leftrightarrow A_1) \) is a sublattice of \(E \);
(II) If \(z_1 \) and \(z_2 \) are disjoint vectors in \(N(r \Leftrightarrow A_h) \), then the unique nonnegative \(w_1 \) and \(w_2 \) with \(w_i \in N(r \Leftrightarrow A_1) \) and \(q_h(w_i) = |z_i| \) for \(i = 1, 2 \) (see Lemma 3.1) are disjoint.

Proof. (I) \(\Rightarrow \) (II) Let \(z_1 \) and \(z_2 \) be disjoint vectors in \(N(r \Leftrightarrow A_h) \). For \(i = 1, 2 \) choose \(w_i \) as in Lemma 3.1. Then \(q_h(|\alpha_1 w_1 + \alpha_2 w_2|) = |q_h(\alpha_1 w_1 + \alpha_2 w_2)| = |\alpha_1 z_1 + \alpha_2 z_2| = |\alpha_1| |z_1| + |\alpha_2| |z_2| \) for all complex \(\alpha_1 \) and \(\alpha_2 \), since \(z_1 \) and \(z_2 \) are disjoint [3, Theorem 1.1.1.vi]. By Lemma 3.1, we get \(w_1 + w_2 = |\alpha_1 w_1 + \alpha_2 w_2| \) for all \(\alpha_1 \) and \(\alpha_2 \) with modulus 1, since \(w_1 + w_2 \) is nonnegative and \(|\alpha_1 w_1 + \alpha_2 w_2| \) belongs to \(N(r \Leftrightarrow A_1) \); here we have used that, by (I), \(N(r \Leftrightarrow A_1) \) is a sublattice. This is equivalent to the disjointness of \(w_1 \) and \(w_2 \).

(II) \(\Rightarrow \) (I) Let \(u \in N(r \Leftrightarrow A_1) \). Then \(z = q_h(u) \in N(r \Leftrightarrow A_h) \). Since \(N(r \Leftrightarrow A_h) \) is a sublattice of \(I_h \) (see Proposition 2.2(II)), \(z^+ \) and \(z^- \) (the positive and the negative parts of \(z \), respectively) belong to \(N(r \Leftrightarrow A_h) \). Applying Lemma 3.1, we choose nonnegative \(w_1 \) and \(w_2 \) in \(N(r \Leftrightarrow A_1) \) such that \(q_h(w_1) = z^+ \) and \(q_h(w_2) = z^- \). Then \(q_h(u) = z = q_h(w_1) + q_h(w_2) \). Since \(u \) and \(w_1 \Leftrightarrow w_2 \) belong to \(N(r \Leftrightarrow A_1) \), we obtain \(u = w_1 \Leftrightarrow w_2 \), by Proposition 2.2(II). Now \(z^+ \) and \(z^- \) are disjoint [3, Theorem 1.1.1.iv], therefore \(w_1 \) and \(w_2 \) are disjoint, by assumption. But then \(|u| = w_1 + w_2 \in N(r \Leftrightarrow A_1) \).

For the rest of this section we assume that \(I_0 \) is a projection band in \(E \). Note that this holds in any Banach lattice with order continuous norm [3, Corollary 2.4.2.xii, Theorem 2.4.2.xi], and Theorem 1.2.9., and a fortiori in \(C^0 \). Then \(I_0 \) is also a projection band in \(I_1 \), and we can identify \(I_0 \) with the kernel of the band projection of \(I_1 \) onto \(I_0 \), i.e. \(I_1 = I_0 \oplus I_0 \). Since \(I_0 \) is \(A_1 \)-invariant, we can represent \(A_1 \) with respect to this direct sum as a triangular operator matrix as follows,

\[
A_1 = \begin{bmatrix}
A_h & 0 \\
A_{0h} & A_0
\end{bmatrix}.
\]

Theorem 3.5. In addition to the general assumptions we assume that \(I_0 \) is a projection band in \(E \). Let \(u \in N(\lambda \Leftrightarrow A_1) \) with \(|\lambda| = r(A) \) and \(u = u_h + u_0 \), where \(u_h \in I_h \) and \(u_0 \in I_0 \). The following assertions are equivalent.

(I) \(|u| \in N(r \Leftrightarrow A_1) \);

(II) \(|(\lambda \Leftrightarrow A_0)u_0| = (r \Leftrightarrow A_h)|u_0| \) and \(|A_{0h}u_h| = A_{0h}|u_h| \).

Proof. \(u \in N(\lambda \Leftrightarrow A_1) \) is equivalent to \((\lambda \Leftrightarrow A_h)u_h = 0 \) and \((\lambda \Leftrightarrow A_0)u_0 = A_{0h}u_h \). The first equality implies \((r \Leftrightarrow A_h)|u_0| = 0 \), by Proposition 2.2(II). Therefore \(|u| \in N(r \Leftrightarrow A_1) \) is equivalent to \((r \Leftrightarrow A_0)|u_0| = A_{0h}|u_h| \). We also obtain

\[
A_{0h}|u_h| \geq |A_{0h}u_h| = |(\lambda \Leftrightarrow A_0)u_0| \geq (r \Leftrightarrow A_h)|u_0|.
\]

From this inequality it follows immediately that (I) and (II) are equivalent.

The second equality in (II) means that \(A_{0h} : I_h \to I_0 \) is a lattice homomorphism on \(N(\lambda \Leftrightarrow A_h) \). However, even if (I) holds, \(A_{0h} \) need not be a lattice homomorphism of all of \(I_h \), as the following example shows.
The peripheral eigenvalues of the matrix \(A = A_1 = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_h & 0 \\ A_{0h} & A_0 \end{bmatrix} \).

For \(x_h = [\varphi 2, 2, 0] \in I_h \) we get \(A_{0h} x_h = 0 \) and \(A_{0h} |x_h| = 4 \).

Since \(r(A_0) < r(A) = r \), the first equality in (II) implies \(|u_{0h}| = (r \leftrightarrow A_0)^{-1} |\lambda \leftrightarrow A_0| u_0| \). We cannot expect that we have here equality, even if statement (I) in Theorem 3.5 holds, as is shown by the following example.

Example 3.6. Let

\[
A = A_1 = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} A_h & 0 \\ A_{0h} & A_0 \end{bmatrix}.
\]

The peripheral eigenvalues of the matrix \(A \) are 2 and \(\varphi 2 \). We have \(u \in N(\pm 2 \leftrightarrow A) \) iff \(u = [\alpha, \pm \alpha, \pm \alpha, \alpha]^T, \alpha \in \mathbb{C} \). Therefore statement (I) of Theorem 3.5 holds for \(\lambda = \pm 2 \). Let \(u = [u_{0h}^T, u_{h0}^T]^T \in N(\pm 2 \leftrightarrow A) \). Then \((\pm 2 \leftrightarrow A_0)^{-1} (\pm 2 \leftrightarrow A_0) u_{0h} = \pm 2 u_{0h} \), but \((\pm 2 \leftrightarrow A_0)^{-1} (\pm 2 \leftrightarrow A_0) u_{0h} = |u_{0h}| \).

In the next section we will use the following result.

Proposition 3.8. In addition to the general assumptions we assume that \(I_h \) is a projection band in \(E \) and that \(N(r \leftrightarrow A_1) = N(r \leftrightarrow A_h) \oplus \{0\} \). For \(\lambda \in \mathbb{C} \) with \(|\lambda| = r(A) = r \) the following assertions are equivalent.

(I) \(N(\lambda \leftrightarrow A) \subset I_h \);
(II) \(\{ |u| : u \in N(\lambda \leftrightarrow A) \} \subset N(r \leftrightarrow A) \).

Proof. (I) \(\Rightarrow \) (II): From (I) we obtain \(N(\lambda \leftrightarrow A) = N(\lambda \leftrightarrow A_1) \). Let \(u \in N(\lambda \leftrightarrow A) \) and for \(z = q_h(u) \) choose \(w \) as in Lemma 3.1. Then \(w \in N(r \leftrightarrow A_1) = N(r \leftrightarrow A_h) \oplus \{0\} \subset I_h \), and \(w \geq |u| \). This implies \(u \in I_h \) and then \(|u| = w \), since \(q_h(|u|) = q_h(w) \), where \(q_h \) is now (identified with) the band projection of \(I_1 \) onto \(I_h \).

(II) \(\Rightarrow \) (I) follows from Proposition 3.2(I); notice that we use for this implication only the general assumptions. \(\square \)

4. The matrix case. In the last section of this note we want to compare the results in Section 3 with those of B.-S. Tam on nonnegative matrices [8, Theorems 2.4 and 2.5]. We shall use the graph theoretic concepts defined in [7, § 2], and [8, § 1].

In the complex Banach lattice \(C^\ell \) each ideal is of the form \(I_\alpha = \{ x \in C^\ell : x_i (= i\text{-th component of } x) = 0 \text{ if } i \notin \alpha \} \) for some \(\alpha \subset \{1, \ldots, \ell\} \); see [6, p. 2]. Let \(\alpha \) and \(\beta \) be nonempty subsets of \(\{1, \ldots, \ell\} \). For \(x \in C^\ell \) we denote by \(x_\alpha \) the subvector of \(x \) with indices from \(\alpha \). For an \(\ell \times \ell \)-matrix \(A \) we denote by \(A_{\alpha\beta} \) the submatrix of \(A \) with row indices from \(\alpha \) and column indices from \(\beta \). We write \(A_{\alpha} \) instead of \(A_{\alpha\alpha} \). In the next lemma we collect some facts on the connection between the ideals
defined in Section 2 and the ideals I_α for a class α of A (i.e., α is a strongly connected component in the directed graph associated with A [8, §1].

Lemma 4.1. Let A be a nonnegative square matrix, and let α be a class of A.

(I) If I is an A-invariant ideal and $I_\alpha \cap I \neq \{0\}$, then $I_\alpha \subset I$.

(II) If $I_\alpha \subset I_\beta \oplus I_\gamma$, then α is nonbasic (i.e., $r(A_\alpha) < r(A)$).

(III) Let α be a basic class. Then α is distinguished iff $I_\alpha \subset I_I$ iff $I_\alpha \subset I_h$ iff $I_\alpha = J_k$ for some $k \in \{1, \ldots, m\}$.

(IV) If α has access to a distinguished basic class of A, then either α is this distinguished class of A or $I_\alpha \subset I_\delta$.

Proof. (I) The ideal $I_\alpha \cap I$ is A_α-invariant. Since A_α is an irreducible matrix, $I_\alpha \cap I \neq \{0\}$ implies $I_\alpha \cap I = I_\alpha$.

(II) We have $r(A_\alpha) \leq \max\{r(A_\beta), r(A_\gamma)\} < r(A)$.

(III) Let α be a distinguished basic class of A. Then there exists a nonnegative eigenvector x of A corresponding to r, such that x_α is strictly positive; see [7, Theorem 3.1]. By Proposition 3.2(I), we have that $x \in I_1$. Therefore $I_\alpha \subset I_1$. If α is a basic class of A with $I_\alpha \subset I_1$, then $I_\alpha \subset J \subset I_\beta_0$, by (II). Let α be a basic class of A with $I_\alpha \subset I_\beta_0$. Then $I_\alpha \subset J$, since $r(A_\gamma) < r(A)$. A_α is the direct sum of the irreducible operators $A_k = A_\alpha J_k (k = 1, \ldots, m)$, so we get $A_\alpha = A_k$ for some $k \in \{1, \ldots, m\}$. Then $I_\alpha = J_k$ for this k. If $I_\alpha = J_k$ for some $k \in \{1, \ldots, m\}$, then $r(A_\alpha) = r(A)$ and A_α is irreducible. Therefore α is a strongly connected set in the directed graph associated with A. From the triangular structure of A_α with respect to the direct sum $I_\alpha = I_1 \oplus I_1 \oplus \cdots \oplus I_m \oplus I_\delta$ it follows that α is a strongly connected component in this graph.

(IV) Let α have access to a distinguished basic class β of A. Assume $\alpha \neq \beta$. Then α is nonbasic. Furthermore, there exists a nonnegative eigenvector x of A corresponding to r, such that x_α is strictly positive; see [7, Theorem 3.1]. Proposition 3.2(I) implies $x \in I_1$. Therefore $x \in N(r \nRightarrow A_1)$. From Proposition 2.2(II) it follows that $N(r \nRightarrow A_1) \subset J \oplus I_\delta$. Therefore $I_\alpha \subset J \oplus I_\delta$. From the last part of the proof of (III) we see that $I_\alpha \cap J \neq \{0\}$ would imply $r(A_\alpha) = r(A)$. Hence we obtain $I_\alpha \subset I_\delta$, since α is nonbasic.

B.-S. Tam [8, Lemma 2.1] showed that A has fully cyclic peripheral spectrum (see [6, Definition 2.5]), iff for all $\lambda \in \mathbb{C}$ with $|\lambda| = r(A)$

$$\{ |u| : u \in N(\lambda \nRightarrow A) \} \subset N(r \nRightarrow A).$$

Thus, if A has a fully cyclic peripheral spectrum, then $N(r \nRightarrow A)$ is a sublattice of $\mathbb{C}^{\mathbb{C}}$.

By Proposition 3.2, the latter assertion implies statement (a) in [8, Theorems 2.4 and 2.5]. In the matrix case we have the following result as a supplement to Theorem 3.4.

Theorem 4.2. For a nonnegative square matrix the following assertions are equivalent.

(I) $N(r \nRightarrow A_1)$ is a sublattice, where $r = r(A)$.

(II) there does not exist a class α of A which has access to two different distinguished basic classes.

Proof. We prove that the assertion (II) is equivalent to Theorem 3.4(II).

(I \Rightarrow (II)) Assume there exists a class α of A which has access to two different
distinguished basic classes a_1 and a_2. Then a has to be a nonbasic class, since a
basic class does not have access to a distinguished basic class. By Lemma 4.1(IV) this
implies $I_a \subseteq I_b$. From [7, 3.1(i)] it follows that there are two nonnegative eigenvectors
w_1 and w_2 of A corresponding to r with $a \subseteq \text{supp}(w_1)$, $a_2 \subseteq \text{supp}(w_2)$ and $a_1 = \text{supp}(q_i(w_i))$. By Proposition 3.2(II), $w_i \in N(r \Leftrightarrow A_i)$, $i = 1, 2$. Since a_1 and a_2
disjoint sets, we get that $q_i(w_1)$ and $q_i(w_2)$ are disjoint nonnegative vectors in
$N(r \Leftrightarrow A_0)$. But w_1 and w_2 are not disjoint, and this contradicts Theorem 4.3(II).

(II) \Rightarrow (I) If z is in $N(r \Leftrightarrow A_0)$, then $|z|$ belongs to $N(r \Leftrightarrow A_0)$; see Proposition 2.2(II). Then supp$(z) = \text{supp}(|z|)$ is the union of some distinguished basic classes. From
[7, 3.1(i) and (ii)] it follows that for the unique nonnegative $w \in N(r \Leftrightarrow A_0)$ with
$q_i(w) = |z|$ its support is the union of all classes which have access to distinguished basic
classes contained in supp(z). Since w is a nonnegative eigenvector of A, the
ideal generated by w is A-invariant; this ideal is I_0, where $\sigma = \text{supp}(w)$. Now let
z_1 and z_2 be disjoint vectors in $N(r \Leftrightarrow A_0)$, and assume that the unique nonnegative
w_1 and w_2 in $N(r \Leftrightarrow A_1)$ with $q_i(w_i) = |z_i|$ for $i = 1, 2$ are not disjoint. Then there
exists a class a of A with $I_a \cap I_{z_1} \cap I_{z_2} \neq \{0\}$, where $\sigma_i = \text{supp}(w_i)$ for $i = 1, 2$.

Since I_0 are A-invariant for $i = 1, 2$, we have $I_a \subseteq I_{z_1} \cap I_{z_2}$. Then a has access to a
distinguished basic class a_1 in z_1 and to one a_2 in z_2. Now $a_1 \subseteq \text{supp}(z_1)$. Therefore
$I_{a_1} \subseteq I_{z_1}$. By Lemma 4.1(III), the a_i are distinguished. Thus a has access to two
different distinguished basic classes of A. This contradicts (II), so w_1 and w_2 are
disjoint. Thus Theorem 4.3(II) holds.

Theorem 4.2 and Proposition 3.2 show that statements (a) and (b) in [8, Theorem
2.4] together are equivalent to the statement that $N(r \Leftrightarrow A)$ is a sublattice of C^σ.

The next theorem will show, how conditions (c) in Theorems 2.4 and 2.5 of [8]
are related to our results.

THEOREM 4.3. Consider for a nonnegative square matrix A and a peripheral
eigenvalue λ of A satisfying the following statements.

(I) If λ is an eigenvalue of A_0 for some class a of A, then a is distinguished.

(II) $N(\lambda \Leftrightarrow A) \subseteq I_1$.

(III) If λ is an eigenvalue of A_0 for some class a of A, then all initial classes of the
family

$$F(\alpha) = \{ \gamma : \gamma \text{ is a class of } A, \lambda \text{ is an eigenvalue of } A_\gamma, \gamma >= a \}$$

are distinguished.

(IV) If λ is an eigenvalue of A_0 for some class a of A, then λ is also an eigenvalue
of A_β for some distinguished class β of A, which has access to a.

(V) λ is an eigenvalue of A_β for some distinguished class β of A.

(VI) $N(\lambda \Leftrightarrow A) \cap I_1 \neq \{0\}$.

Then (I) \Rightarrow (II) \Rightarrow (III) \Leftrightarrow (IV) \Rightarrow (V) \Leftrightarrow (VI).

Proof. (I) \Rightarrow (II) Let $0 \neq u \in N(\lambda \Leftrightarrow A)$. Then for all classes a of A, which
are final in $\text{supp}(u)$, λ is an eigenvalue of A_a; see [8, Lemma 2.3]. Therefore, by
assumption, all (final) classes in $\text{supp}(u)$ have access to a distinguished basic class of
A. By Lemma 4.1(III) and (IV), we have $u \in I_1$.

(II) \Rightarrow (III) Take an initial class β in $F(\alpha)$. Notice that $F(\alpha)$ is nonempty, since a
belongs to it. Then \(\beta \) is basic, since \(|\lambda| = r(A)\). Let \(\omega \) be the union of all classes of \(A \), which have access to \(\beta \) and are different from \(\beta \). Set \(\delta = \{1, \ldots, \ell\} \setminus (\omega \cup \beta) \). Note that one or both of the sets \(\omega \) and \(\delta \) can be empty. Then the corresponding matrices in the decomposition below do not appear. With respect to the decomposition \(\mathcal{C}^k = I_\delta \oplus I_\beta \oplus I_\omega \) the matrix \(A \) has the block triangular form

\[
\begin{bmatrix}
A_\delta & 0 & 0 \\
A_\beta & A_\beta & 0 \\
A_{\omega \delta} & A_{\omega \beta} & A_\omega
\end{bmatrix}.
\]

By the choice of \(\beta \), \(\lambda \) is not an eigenvalue of \(A_\omega \). Take an eigenvector \(u_\beta \) of \(A_\beta \) corresponding to \(\lambda \). Define \(u_\omega = (\lambda \Leftrightarrow A_\omega)^{-1} A_{\omega \beta} u_\beta \) and \(u = [o^T, u_\beta^T, u_\omega^T]^T \). Then \(u \) is an eigenvector of \(A \) corresponding to \(\lambda \). Now \(u \in \mathcal{N}(\lambda \Leftrightarrow A) \cap I_1 \) by assumption. Then \(o \neq [o^T, u_\beta^T, o^T]^T \in I_\beta \cap I_1 \) implies \(I_\beta \cap I_1 \neq \{0\} \). By Lemma 4.1(I), we have \(I_\beta \subset I_1 \).

Since \(\beta \) is basic, we get from Lemma 4.1 (III) that it is distinguished.

(III) \(\Rightarrow \) (IV) is clear.

(IV) \(\Rightarrow \) (III) Take an initial class \(\kappa \) of \(A \) in \(F(\alpha) \). Then \(\lambda \) is an eigenvalue of \(A_\kappa \). By assumption, there exists a distinguished basic class \(\beta \) of \(A \) with \(\beta \supseteq \kappa \) and \(\lambda \) is an eigenvalue of \(A_\beta \). Then \(\beta \supseteq \kappa \supseteq \alpha \), thus \(\beta \in F(\alpha) \). Therefore \(\kappa = \beta \), since \(\kappa \) is initial in \(F(\alpha) \).

(IV) \(\Rightarrow \) (V) is clear, since each eigenclass of \(A \) has to be an eigenclass of \(A_\alpha \) for at least one class \(\alpha \) of \(A \).

(V) \(\Rightarrow \) (VI) For a distinguished basic class \(\beta \) let \(u_\beta \) be an eigenvector of \(A_\beta \) corresponding to \(\lambda \). By Lemma 4.1(III), \(A_\beta = A_{\kappa \beta} \) for some \(\kappa \in \{1, \ldots, m\} \). Let \(u_\beta = [u_1^T, \ldots, u_m^T]^T \) with \(u_k = u_\beta \) and \(u_i = 0 \) if \(i \neq k \). The vector \(u_i \) is an eigenvector of \(A_\beta \) corresponding to \(\lambda \), since \(A_\beta = A_{\kappa \beta} \oplus \ldots \oplus A_{\kappa \gamma} \). Define \(u_\gamma = (\lambda \Leftrightarrow A_\gamma)^{-1} A_{\gamma \beta} u_\beta \) and \(u_1 = [u_1^T, u_\beta^T]^T \). Then \(u_1 \) is an eigenvector of \(A_1 \) corresponding to \(\lambda \). Thus \(\{0\} \neq \mathcal{N}(\lambda \Leftrightarrow A_1) = \mathcal{N}(\lambda \Leftrightarrow A) \cap I_1 \).

(VI) \(\Rightarrow \) (V) Let \(u \in I_1 \) be an eigenvector of \(A \) corresponding to \(\lambda \). If \(\beta \) is a final class of \(A \) in \(\text{supp}(u) \), then \(\beta \) is a basic class [8, Lemma 2.3]. Since \(I_\beta \subset I_1 \), \(\beta \) is distinguished (see Lemma 4.1(III)).

The following examples will show that the converses of the three one-way implications in Theorem 4.3 are not true in general.

Example 4.4. Let

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
\alpha & \beta & 0 & 0 & 1 \\
\gamma & \delta & 0 & 1 & 0
\end{bmatrix}
\]

with nonnegative numbers \(a, b, c \) and \(d \).

Then \(\alpha = \{1, 2\} \), \(\beta = \{3\} \) and \(\gamma = \{4, 5\} \) are the classes of \(A \). The matrices \(A_\alpha \), \(A_\gamma \) and \(A \) have eigenvalues 1 and \(\psi \). The matrix \(A_\beta \) has the eigenvalue 1. Therefore all classes of \(A \) are basic. The classes \(\beta \) and \(\gamma \) are distinguished and \(\alpha \) is not distinguished.

Further, here \(I_1 = \{x \in \mathbb{C}^5 : x_1 = x_2 = 0\} = I_\beta \oplus I_\gamma \) and \(I_\beta = \{0\} \). Now let
(1) \(a = d = 1\) and \(b = c = 0\). Then statement (I) is not true for \(\lambda = \mathbb{C}\), but
\(N(\mathbb{C} \leftrightarrow A) = \{x \in \mathbb{C}^5 : x_1 = x_2 = x_3 = 0, x_4 + x_5 = 0\} \subset I_1\). For \(\lambda = r(A)\) statement (I) in Theorem 4.3 is equivalent to: “All basic classes of \(A\) are distinguished.” This is equivalent to \(p = 1\), where \(p\) is the order of the pole \(r(A)\) of the resolvent, cf. Section 2. The example also shows that even for \(\lambda = r(A)\) (II) does not imply (I), since
\(N(1 \leftrightarrow A) = \{x \in \mathbb{C}^5 : x_1 = x_2 = 0, x_4 \leftrightarrow x_5 = 0\} \subset I_1\) and \(p = 2\).

(2) \(a = b = c = d = 1\). Then statement (II) is not true for \(\lambda = \mathbb{C}\), since
\(N(\mathbb{C} \leftrightarrow A) = \{x \in \mathbb{C}^5 : x_1 + x_2 = 0, x_2 + 2x_3 = 0, x_4 + x_5 = 0\}\). But statement (III) is true for \(\lambda = \mathbb{C}\), since \(F(\alpha) = \{\gamma, \alpha\}\) with \(\gamma \geq \alpha\) and \(F(\gamma) = \{\gamma\}\).

(3) \(a = b = c = d = 0\). Then statement (IV) is not true for \(\lambda = \mathbb{C}\), since \(\gamma \neq \alpha\). But statement (V) is true, since \(\mathbb{C}\) is an eigenvalue of \(A\).

Part (b) of [8, Theorem 2.5], which states that each distinguished basic class of \(A\) is initial (in the family of all classes of \(A\)), is equivalent to \(N(r \leftrightarrow A_1) = N(r \leftrightarrow A_2) \pm \{0\}\). This follows immediately from [7, 3.1(i) and (ii)]. Combining this observation with Proposition 3.8 we obtain the following result.

Corollary 4.5. Let \(A\) be a nonnegative square matrix, such that each distinguished class of \(A\) is initial (in the family of all classes of \(A\)). Then \(A\) has a fully cyclic peripheral spectrum iff \(N(\lambda \leftrightarrow A) \subset I_1\) for all peripheral eigenvalues of \(A\).

This corollary is stronger than [8, Theorem 2.5] as Theorem 4.3 (I) \(\Rightarrow\) (II) and Example 4.4(1) show.

References