On nonnegative operators and fully cyclic peripheral spectrum

K. H. Foerster
foerster@math.tu-berlin.de

B. Nagy
bnagy@math.bme.hu

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1011
ON NONNEGATIVE OPERATORS AND FULLY CYCLIC PERIPHERAL SPECTRUM *

K.-H. FÖRSTER† AND B. NAGY‡

Dedicated to Hans Schneider on the occasion of his seventieth birthday

Abstract. In this note the properties of the peripheral spectrum of a nonnegative linear operator A (for which the spectral radius is a pole of its resolvent) in a complex Banach lattice are studied. It is shown, e.g., that the peripheral spectrum of a natural quotient operator is always fully cyclic. We describe when the nonnegative eigenvectors corresponding to the spectral radius r span the kernel $N(r - A)$. Finally, we apply our results to the case of a nonnegative matrix, and show that they sharpen earlier results by B.-S. Tam [Tamkang J. Math. 21:65–70, 1990] on such matrices and full cyclicity of the peripheral spectrum.

AMS subject classifications. 47B65, 47A10, 15A48

Key words. Banach lattice, lattice ideal, nonnegative operator, peripheral spectrum, fully cyclic, nonnegative matrix

1. Introduction. It follows from results of H.H. Schaefer [6, I.2.6 and V.4.6], that in the finite dimensional case C^n and in certain Banach function lattices a nonnegative operator A has a fully cyclic peripheral point spectrum iff for all $\lambda \in \mathbb{C}$ with $|\lambda| = r(A)$

$$x \in N(\lambda \Leftrightarrow A) \text{ implies } |x| \in N(r(A) \Leftrightarrow A);$$

here $r(A)$ denotes the spectral radius of A; see also B.-S. Tam [8, Lemma 2.1].

In this note we consider nonnegative operators A in a Banach lattice for which the spectral radius $r(A)$ is a pole of its resolvent. We give necessary and sufficient conditions that for a given $\lambda \in \mathbb{C}$ with $|\lambda| = r(A)$ the inclusion $\{|x| : x \in N(\lambda \Leftrightarrow A)\} \subset N(r(A) \Leftrightarrow A)$ holds; in particular, we give necessary and sufficient conditions that $N(r(A) \Leftrightarrow A)$ has a basis of nonnegative eigenvectors, and is a sublattice, respectively.

As examples show (see [8, Example 2.7]), the inclusion above is, even in the matrix case, not only a property of the spectrum and the associated directed graph of A. This will be very clear from Theorem 3.5. On the other hand, Theorem 4.2 in the matrix case and under the assumption that the nonnegative vectors in $N(r(A) \Leftrightarrow A)$ span this kernel will show that the property of $N(r(A) \Leftrightarrow A)$ being a sublattice can be characterized by properties of the reduced and of the singular graphs of A.

The main method of the investigation is the systematic application of an idea going back to Lotz and Schaefer (cf. [6]), and successfully developed by Greiner [2], [4]. The closed lattice ideals I_0 and I_1, defined below in terms of the Laurent expansion

*Received by the editors on 27 November 1997. Accepted for publication on 5 February 1998.
Handling Editor: Daniel Hershkowitz

†Department of Mathematics, Technical University Berlin, Sekr. MA 6-4, Strasse des 17. Juni 135, D-10623 Berlin, Germany (rfoerster@math.tu-berlin.de).

‡Department of Analysis, Institute of Mathematics, Technical University Budapest, H-1521 Budapest, Hungary (bnagy@math.bme.hu).
of the resolvent of \(A \) around the spectral radius, their quotient \(I_h \) and the restrictions of (or the induced operator by) \(A \) are the most important technical means of the study, and a number of the results presented here find their natural formulation in this terminology.

In Section 4 we compare the results of Section 3 on nonnegative operators in Banach lattices with those of B.-S. Tam [8] on nonnegative matrices. One of the main results here is Theorem 4.2, which shows that for a nonnegative square matrix \(A \) the kernel \(N(r \Leftrightarrow A_1) \) for the restriction \(A_1 \) of \(A \) to the lattice ideal \(I_1 \) is a sublattice iff there does not exist a (strongly connected equivalence) class of \(A \) having access to two different distinguished basic classes (as expressed in the already standard graph theoretic terminology). The results of Section 4 sharpen the main results of Tam [8, Theorems 2.4 and 2.5] on matrices with fully cyclic peripheral spectrum.

2. Definitions and Preliminaries. In the following \(A \) denotes a nonnegative operator in a complex Banach lattice \(E \). We assume that its spectral radius \(r = r(A) \) is a pole of order \(p \) \((\geq 1)\) of its resolvent \(R(:,A) \), i.e., we have for some \(\delta > 0 \) and operators \(Q_k \) \((k = \Leftrightarrow p, \Leftrightarrow p + 1, \ldots)\) the Laurent expansion

\[
R(\lambda, A) = \sum_{k=-p}^{\infty} (\lambda \Leftrightarrow r)^k Q_k \quad \text{if} \quad 0 < |\lambda \Leftrightarrow r| < \delta.
\]

Note that \(Q_{-p} \) is nonnegative, since \(A \) is nonnegative. Following G. Greiner [2], [4, Chapters B III and C III], we define

\[
I_1 = \{ x \in E : (Q_{-p} | x| = \ldots = Q_{-2} | x| = 0)Q_{-1} | x| = 0 \}
\]

(hence \(I_1 = E \) if \(p = 1 \)), and

\[
I_0 = \{ x \in E : Q_{-1} | x| = 0 \}.
\]

Note that \(I_0 \) can be trivial. Then we have (see [4, p. 174 and p. 303]) that \(I_1 \) and \(I_0 \) are closed ideals of \(E \), and they are invariant under \(A \) and \(Q_k \) \((k = \Leftrightarrow p, \Leftrightarrow p + 1, \ldots)\). If \(A_1 \) and \(A_0 \) denote the restrictions of \(A \) to \(I_1 \) and \(I_0 \), respectively, then

\[
r(A_1) = r(A) \quad \text{is a pole of} \quad R(:, A_1) \quad \text{of order} \ 1;
\]

\[
r(A_0) < r(A), \quad \text{here we set} \quad r(A_0) = \Leftrightarrow \infty \quad \text{if} \quad I_0 = \{ 0 \}.
\]

Since \(I_0 \subseteq \neq I_1 \), the quotient space \(I_0 = I_1/I_0 \) is well-defined and is a Banach lattice. Further, \(A_1 \) induces uniquely a nonnegative operator \(A_h \) in \(I_h \) such that \(q_h A_1 = A_h q_h \), where \(q_h \) denotes the quotient map \(I_1 \rightarrow I_1/I_0 \). Then (see [4, p. 174 and p. 303])

\[
r(A_h) = r(A_1) = r(A) = r, \quad r \quad \text{is a pole of order} \ 1 \quad \text{of} \quad R(:, A_h), \quad \text{and the residuum of} \quad R(:, A_h) \quad \text{at} \ r \ (\text{which is induced by} \ Q_{-1} \ \text{in} \ I_h \) \text{is strictly positive in the sense that the zero element is the only nonnegative element in} \ I_h \text{which it maps to the zero element. Since} \ r \text{is a pole of order} \ 1 \text{of} \ R(:, A_h) \text{, the associated residuum is a projection with kernel} \ R(r \Leftrightarrow A_h) = \text{range of} \ r \Leftrightarrow A_h. \ \text{Therefore} \ R(r \Leftrightarrow A_h) \text{cannot contain any nonzero element} \ y \text{of} \ I_h \text{for which either} \ y \text{or} \ \Leftrightarrow y \text{is nonnegative.}
Let J be the closed ideal of I_h generated by $N(r \Leftrightarrow A_h)$. J is A_h-invariant, since $N(r \Leftrightarrow A_h) = A_h$-invariant. Let $A_i = A_h \mid J$ (i.e. the restriction of A_h to J). Further, let $I_j = I_h / J$ and $A_j = A_h / J$ (i.e. the operator induced by A_h in I_j). We set $r(A_j) = \infty$ if $I_j = \{0\}$.

The important basic connections between different kernels and spectral radii of the operators defined above will be collected in the proposition below. The following useful lemma, which is not new, will be applied in the proof of the proposition and several times at other places of this note.

Lemma 2.1. Let T be a linear map in a vector space V and let M be a T-invariant linear submanifold of V. Let $T|M$ denote the restriction of T to M, let T/M denote the linear map induced by T in the quotient space V/M, and let $q_M : V \rightarrow V/M$ denote the quotient map. Then the following hold.

(I) If $T|M$ is bijective, then q_M maps the kernel $N(T)$ bijectively onto $N(T)|M$.

(II) If $T|M$ is injective, then $N(T) = N(T)|M$.

Proof. (I) Since $q_M T = (T/M) q_M$, the quotient map q_M maps $N(T)$ into $N(T)|M$. Let $z \in N(T)|M$. Take $v \in V$ such that $q_M(v) = z$, then $q_M(Tv) = T/M z = 0$, i.e., $Tv \in M$. Since $T|M$ is surjective, we have $Tv = (T/M)w$ for some $w \in M \subset V$. Thus $u = v \Leftrightarrow w \in N(T)$ and $q_M(u) = q_M(v) = z$. If $u \in N(T)$ satisfies $q_M(u) = 0$, then $u \in M$ and $(T|M) u = 0$. Since $T|M$ is injective, we obtain $u = 0$.

(II) Clearly we have $N(T)|M \subset N(T)$. Let $u \in N(T)$. Then $T/M q_M(u) = q_M(Tu) = 0$, and therefore $q_M(u) = 0$, since T/M is injective. Thus $u \in M \cap N(T) = N(T)|M$. \[\]

Proposition 2.2. Let the assumptions and notations preceding Lemma 2.1 hold. Then the following hold.

(I) $r(A) = r(A_1) = r(A_h) = r(A_i) > \max\{r(A_j), r(A_k)\}$, and $r(A)$ is a pole of order 1 of $R(\cdot, A_1)$, $R(\cdot, A_h)$ and $R(\cdot, A_i)$, respectively.

(II) For all $\lambda \in \mathbb{C}$ with $|\lambda| = r(A) = r$ we have $N(\lambda \Leftrightarrow A) \supset N(\lambda \Leftrightarrow A_1)$, $N(\lambda \Leftrightarrow A_h) = N(\lambda \Leftrightarrow A_i)$, q_λ maps $N(\lambda \Leftrightarrow A_1)$ bijectively onto $N(\lambda \Leftrightarrow A_h)$, $\dim N(\lambda \Leftrightarrow A_1) = \dim N(\lambda \Leftrightarrow A_h) = \dim N(\lambda \Leftrightarrow A_i)$, and $\{|z| : z \in N(\lambda \Leftrightarrow A_h)\} \subset N(\lambda \Leftrightarrow A_h)$. It follows that $N(r \Leftrightarrow A_i)$ is a sublattice of I_h.

Proof. (I) As seen above, the residuum $Q_{h,-1}$ of $R(\cdot, A_h)$ at r is strictly positive. Then its restriction $Q_{h,1}$ to J is also strictly positive (note that $\{0\} \neq N(r \Leftrightarrow A_h) \subset J$). This implies the three equalities. Since $R(Q_{h,-1}) = N(r \Leftrightarrow A_h) \subset J$, it follows that $R(\cdot, A_i)$ is holomorphic at r. Therefore $r(A_j) < r(A)$, since A_j is a nonnegative operator in the Banach lattice I_j [3, Proposition 4.1.1.i]. Note that we have defined $r(A_j) = \infty$ if $I_j = \{0\}$.

(II) The first inclusion is evident. For the second statement we apply Lemma 2.1 (II) with $V = I_h, M = J$ and $T = \lambda \Leftrightarrow A_h$. Note that $T|M = \lambda \Leftrightarrow A_i$ is injective, since $r(A_i) < r(A) = |\lambda|$. The third statement follows from Lemma 2.1 (I) if we set $V = I_1, M = I_0$ and $T = \lambda \Leftrightarrow A_1$. Note that $T|M = \lambda \Leftrightarrow A_h$ is bijective, since $r(A_h) < r(A) = |\lambda|$. The equality $\dim N(\lambda \Leftrightarrow A_1) = \dim N(\lambda \Leftrightarrow A_h) = \dim N(\lambda \Leftrightarrow A_i)$ is now evident. We shall prove $\dim N(r \Leftrightarrow A_1) \geq \dim N(r \Leftrightarrow A_i)$, which needs a proof only if $m = \dim N(r \Leftrightarrow A_i) < \infty$. By [4, C-III, Lemma 3.13], the ideal J is the mutually orthogonal sum of $m A_i$-invariant ideals $J_k (k = 1, \ldots, m)$, the restrictions
\(A_k = A_1 / J_k\) are irreducible, and \(r(A_{ik}) = r(A)\) is a pole of \(R(\lambda, A_{ik})\) \((k = 1, \ldots, m)\). The eigenspaces \(N(r \iff A_{ik})\) are one-dimensional; see [6, V. § 5]. By [6, Corollary to Theorem V.5.A], \(\dim N(\lambda \iff A_{ik}) \leq 1\). \(A_i\) is the direct sum of the restrictions \(A_{ik}\). Then \(N(\lambda \iff A_{ik})\) is the direct sum of the \(N(\lambda \iff A_{ik})\) \((k = 1, \ldots, m)\). Therefore \(\dim N(\lambda \iff A_1) \leq m = \dim N(r \iff A_1)\). For the proof of the next statement take \(z \in N(\lambda \iff A_2)\). Let \(y = (r \iff A_2) |z|\). Then \(y \leq r |z| \iff |A_2 z| \leq |(\lambda \iff A_2) z| = 0\). By a remark preceding Lemma 2.1, then \(y = 0\).

3. Results and Proofs. We shall always assume that \(A\) is a nonnegative linear operator in a Banach lattice \(E\), and its spectral radius is a pole of its resolvent.

We shall freely use the concepts and notations of Section 2. The next lemma is crucial for the main results of this note.

Lemma 3.1. Let \(|\lambda| = r(A) = r\). For each \(z \in N(\lambda \iff A_2)\) there exists a unique nonnegative \(w \in N(r \iff A_2)\) such that \(q_\lambda(w) = |z|\); for the unique \(u \in N(\lambda \iff A_1)\) satisfying \(q_\lambda(u) = z\) it follows that \(q_\lambda(w) = q_\lambda([u])\) and \(w \geq [u]\).

Proof. Let \(z \in N(\lambda \iff A_2)\). By Proposition 2.2(II), there exists a unique \(u \in N(\lambda \iff A_1)\) with \(q_\lambda(u) = z\). Proposition 2.2(II) implies \(|z| \in N(r \iff A_2)\). Since \(q_\lambda\) is a lattice homomorphism, we get \(q_\lambda((r \iff A_2) |u|) = (r \iff A_2) q_\lambda([u]) = (r \iff A_2) |z| = 0\), i.e. \((r \iff A_2) |u| \in i_t\). Since \((r \iff A_2) |u| \leq |(\lambda \iff A_1) u| = 0\), there exists a unique nonnegative \(u_0\) in \(i_t\) such that \((r \iff A_2) u_0 = (\lambda \iff A_1) |u|\) (notice that \(r(A_2) = r(A) = r\), thus \(r \iff A_2\) has a nonnegative inverse). Then \(w = |u| + u_0\) is a vector we are looking for. If \(v \in i_1\) satisfies \(q_\lambda(v) = q_\lambda([u])\), then \([u] \iff v \in i_0\). If further \(v \in N(r \iff A_1)\), then \([u] + u_0 \iff v \in i_0 \cap N(r \iff A_1) = N(r \iff A_2)\). But \(r \iff A_0\) is injective, therefore \(v = [u] + u_0 = w\), i.e. \(w\) is unique as stated.

Proposition 3.2. Under our general assumptions the following hold.

(I) \(N(r \iff A) \cap E_+ \subset N(r \iff A_1)\).

(II) \(\text{span } (N(r \iff A) \cap E_+) = N(r \iff A_1)\).

(III) the nonnegative eigenvectors of \(A\) corresponding to \(r\) span the eigenspace \(N(r \iff A)\) iff \(N(r \iff A) \subset i_1\) iff \(N(r \iff A) = N(r \iff A_1)\).

(IV) if \(N(r \iff A_1)\) is finite dimensional, then \(N(r \iff A_1)\) has a basis of nonnegative eigenvectors of \(A_1\) corresponding to \(r\).

Proof. (I) \(u \in N(r \iff A)\) is equivalent to \(R(\lambda, A) u = (\lambda \iff r)^{-1} u\) if \(0 < |\lambda| \iff r < \delta\) for some \(\delta > 0\). Therefore \(u \in N(r \iff A) \cap E_+\) implies \(u \in \{ x \in E : Q_{\lambda^{-1}}|x| = 0\} = i_1\).

(II) Let \(u \in N(r \iff A_1)\). Then its real and its imaginary parts belong to \(N(r \iff A_1)\). Therefore we assume w.l.o.g. that \(u\) is real. Choose \(w\) as in Lemma 3.1. Then \(u = \frac{1}{|z|}(w + u) \iff \frac{1}{|z|}(w \iff u)\), \(w \pm u \in N(r \iff A_1)\) and \(w \pm u \in E_+\).

(III) The first part follows from \(N(r \iff A_1) = N(r \iff A) \cap i_1\) and (II), the second part is clear.

(IV) follows simply from (II).

Remark 3.3. In connection with (III) and (IV) recall that U.G. Rothblum [5] proved that in the case \(\dim E < \infty\) the generalized eigenspace \(N((r \iff A)^p)\) (where \(p\) is the order of the pole \(r\)) always has a basis of nonnegative vectors. However, [1, Example 18] shows that in the general case \((\dim E = \infty)\) the corresponding statement can be false even if \(p = 2\) and \(\dim N((r \iff A)^2) = 2\).

Theorem 3.4. Let the general assumptions hold. The following assertions are
From this inequality it follows immediately that I_1 and I_2 are equivalent.

(I) $N(r \Leftrightarrow A_1)$ is a sublattice of E;

(II) If z_1 and z_2 are disjoint vectors in $N(r \Leftrightarrow A_2)$, then the unique nonnegative w_1 and w_2 with $w_i \in N(r \Leftrightarrow A_1)$ and $q_{A_i}(w_i) = \|z_i\|$ for $i = 1, 2$ (see Lemma 3.1) are disjoint.

Proof. (I) \Rightarrow (II) Let z_1 and z_2 be disjoint vectors in $N(r \Leftrightarrow A_2)$. For $i = 1, 2$ choose w_i as in Lemma 3.1. Then $q_{A_i}([a_1 w_1 + a_2 w_2]) = [q_{A_i}(a_1 w_1 + a_2 w_2)] = |a_1 z_1 + a_2 z_2| = |a_1| |z_1| + |a_2| |z_2|$ for all complex a_1 and a_2, since z_1 and z_2 are disjoint [3, Theorem 1.1.1.6]. By Lemma 3.1, we get $w_1 + w_2 = [a_1 w_1 + a_2 w_2]$ for all a_1 and a_2 with modulus 1, since $w_1 + w_2$ is nonnegative and $|a_1 w_1 + a_2 w_2|$ belongs to $N(r \Leftrightarrow A_1)$; here we have used that, by (I), $N(r \Leftrightarrow A_1)$ is a sublattice. This is equivalent to the disjointness of w_1 and w_2.

(II) \Rightarrow (I) Let $u \in N(r \Leftrightarrow A_1)$. Then $z = q_{A_1}(u) \in N(r \Leftrightarrow A_2)$. Since $N(r \Leftrightarrow A_2)$ is a sublattice of I_2 (see Proposition 2.2(II)), z^+ and z^- (the positive and the negative parts of z, respectively) belong to $N(r \Leftrightarrow A_2)$. Applying Lemma 3.1, we choose nonnegative w_1 and w_2 in $N(r \Leftrightarrow A_2)$ such that $q_{A_1}(w_1) = z^+$ and $q_{A_1}(w_2) = z^-$. Then $q_{A_1}(u) = z = q_{A_1}(w_1) = q_{A_1}(w_2)$. Since u and $w_1 \Leftrightarrow w_2$ belong to $N(r \Leftrightarrow A_1)$, we obtain $u = w_1 \Leftrightarrow w_2$, by Proposition 2.2(II). Now z^+ and z^- are disjoint [3, Theorem 1.1.1.4], therefore w_1 and w_2 are disjoint, by assumption. But then $|u| = w_1 + w_2 \in N(r \Leftrightarrow A_1)$. \qed

For the rest of this section we assume that I_0 is a projection band in E. Note that this holds in any Banach lattice with order continuous norm [3, Corollary 2.4.2.xiv, Theorem 2.4.2.ii, and Theorem 1.2.9.], and a fortiori in C^ℓ. Then I_0 is also a projection band in I_1, and we can identify I_0 with the kernel of the band projection of I_1 onto I_0, i.e., $I_1 = I_0 \oplus I_0$, where \oplus means disjoint sum in the lattice sense. Since I_0 is A_1-invariant, we can represent A_1 with respect to this direct sum as a triangular operator matrix as follows,

$$A_1 = \begin{bmatrix} A_{i} & 0 \\ A_{0i} & A_{0} \end{bmatrix}.$$

Theorem 3.5. In addition to the general assumptions we assume that I_0 is a projection band in E. Let $u \in N(\lambda \Leftrightarrow A_1)$ with $|\lambda| = r(A)$ and $u = u_h + u_0$, where $u_h \in I_h$ and $u_0 \in I_0$. The following assertions are equivalent.

(I) $|u| \in N(r \Leftrightarrow A_1)$;

(II) $|\lambda \Leftrightarrow A_0| u_h = (r \Leftrightarrow A_0)|u_0|$ and $|A_{0i} u_h| = A_{i0} |u_h|$.

Proof. $u \in N(\lambda \Leftrightarrow A_1)$ is equivalent to $(\lambda \Leftrightarrow A_0) u_h = 0$ and $(\lambda \Leftrightarrow A_0) u_0 = A_{0i} u_h$. The first equality implies $(r \Leftrightarrow A_0)|u_0| = 0$, by Proposition 2.2(II). Therefore $|u| \in N(r \Leftrightarrow A_1)$ is equivalent to $(r \Leftrightarrow A_0)|u_0| = A_{0i} |u_h|$. We also obtain

$$A_{0i} |u_h| \geq |A_{0} u_h| = |(\lambda \Leftrightarrow A_0) u_h| \geq (r \Leftrightarrow A_0)|u_0|.$$

From this inequality it follows immediately that (I) and (II) are equivalent. \qed

The second equality in (II) means that $A_{0i} : I_h \to I_h$ is a lattice homomorphism on $N(\lambda \Leftrightarrow A_0)$. However, even if (I) holds, A_{0i} need not be a lattice homomorphism of all of I_h, as the following example shows.
Example 3.6. Let
\[
A = A_1 = \begin{bmatrix}
0 & 2 & 2 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
A_h & 0 \\
A_{\theta_h} & A_0
\end{bmatrix}.
\]
For \(x_h = [\leq 2, 0]^T \in I_h\) we get \(A_{\theta_h} x_h = 0\) and \(A_{\theta_h} |x_h| = 4\).

Since \(r(A_0) < r(A) = r\), the first equality in (II) implies \(|u_0| = (r \Leftrightarrow A_0)^{-1}|(\lambda \Leftrightarrow A_0)u_0| \geq |(r \Leftrightarrow A_0)^{-1}(\lambda \Leftrightarrow A_0)u_0|\). We cannot expect that we have here equality, even if statement (I) in Theorem 3.5 holds, as is shown by the following example.

Example 3.7. Let
\[
A = A_1 = \begin{bmatrix}
02 & 00 \\
20 & 00 \\
10 & 01 \\
01 & 10
\end{bmatrix} = \begin{bmatrix}
A_h & 0 \\
I & A_0
\end{bmatrix}.
\]
The peripheral eigenvalues of the matrix \(A\) are 2 and \(\Leftrightarrow 2\). We have \(u \in N(\pm 2 \Leftrightarrow A)\) iff \(u = [a, \pm a, \pm a, a]^T\), \(a \in \mathbb{C}\). Therefore statement (I) of Theorem 3.5 holds for \(\lambda = \pm 2\). Let \(u = [u_h^T, u_0^T]^T \in N(\Leftrightarrow 2 \Leftrightarrow A)\). Then \(u_{\theta_0} = u_h = (\Leftrightarrow 2 \Leftrightarrow A_0)u_0, \quad (2 \Leftrightarrow A_0)^{-1}(\Leftrightarrow 2 \Leftrightarrow A_0)u_0 = u_{\pm 2}, \quad (2 \Leftrightarrow A_0)^{-1}(\Leftrightarrow 2 \Leftrightarrow A_0)u_0 | = | u_0 |.

In the next section we will use the following result.

Proposition 3.8. In addition to the general assumptions we assume that \(I_0\) is a projection band in \(E\) and that \(N(\lambda \Leftrightarrow A) = N(\lambda \Leftrightarrow A_0) \oplus \{0\}\). For \(\lambda \in \mathbb{C}\) with \(|\lambda| = r(A) = r\) the following assertions are equivalent.
(I) \(N(\lambda \Leftrightarrow A) \subset I_h\);
(II) \(\{u : u \in N(\lambda \Leftrightarrow A)\} \subset N(\lambda \Leftrightarrow A)\).

Proof. (I) \(\Rightarrow\) (II): From (I) we obtain \(N(\lambda \Leftrightarrow A) = N(\lambda \Leftrightarrow A_0)\). Let \(u \in N(\lambda \Leftrightarrow A)\) and for \(z = q_h(u)\) choose \(w\) as in Lemma 3.1. Then \(w \in N(\lambda \Leftrightarrow A_0) = N(\lambda \Leftrightarrow A_0) \oplus \{0\} \subset I_h\), and \(w \geq |u|\). This implies \(u \in I_h\) and then \(|u| = w\), since \(q_h(|u|) = q_h(w)\), where \(q_h\) is now (identified with) the band projection of \(I_1\) onto \(I_h\).

(II) \(\Rightarrow\) (I) follows from Proposition 3.2(II); notice that we use for this implication only the general assumptions.

4. The matrix case. In the last section of this note we want to compare the results in Section 3 with those of B.-S. Tam on nonnegative matrices [8, Theorems 2.4 and 2.5]. We shall use the graph theoretic concepts defined in [7, § 2], and [8, § 1].

In the complex Banach lattice \(C^\ell\) each ideal is of the form \(I_\alpha = \{x \in C^\ell : x_i (= i\text{-th component of } x) = 0 \text{ if } i \notin \alpha\} \text{ for some } \alpha \subset \{1, \ldots, \ell\}\); see [6, p. 2]. Let \(\alpha\) and \(\beta\) be nonempty subsets of \(\{1, \ldots, \ell\}\). For \(x \in C^\ell\) we denote by \(x_\alpha\) the subvector of \(x\) with indices from \(\alpha\). For an \(\ell \times \ell\) matrix \(A\) we denote by \(A_{\alpha\beta}\) the submatrix of \(A\) with row indices from \(\alpha\) and column indices from \(\beta\). We write \(A_\alpha\) instead of \(A_{\alpha\alpha}\). In the next lemma we collect some facts on the connection between the ideals
defined in Section 2 and the ideals I_{α} for a class α of A (i.e., α is a strongly connected component in the directed graph associated with A [8, §1].

Lemma 4.1. Let A be a nonnegative square matrix, and let α be a class of A.

(I) If I is an A-invariant ideal and $I_{\alpha} \cap I \neq \{0\}$, then $I_{\alpha} \subset I$.

(II) If $I_{\alpha} \subset I_{\alpha} \oplus I_{\beta}$, then α is nonbasic (i.e., $r(A_{\alpha}) < r(A)$).

(III) Let α be a basic class. Then α is distinguished iff $I_{\alpha} \subset I_{1}$ iff $I_{\alpha} \subset I_{k}$ iff $I_{\alpha} = J_{k}$ for some $k \in \{1, \ldots, m\}$.

(IV) If α has access to a distinguished basic class of A, then either α is this distinguished class of A or $I_{\alpha} \subset I_{6}$.

Proof. (I) The ideal $I_{\alpha} \cap I$ is A_{α}-invariant. Since A_{α} is an irreducible matrix, $I_{\alpha} \cap I \neq \{0\}$ implies $I_{\alpha} \cap I = I_{\alpha}$.

(II) We have $r(A_{\alpha}) \leq \max\{r(A_{\alpha}), r(A_{j})\} < r(A)$.

(III) Let α be a distinguished basic class of A. Then there exists a nonnegative eigenvector x of A corresponding to r, such that x_{α} is strictly positive; see [7, Theorem 3.1]. By Proposition 3.2(I), we have that $x \in I_{1}$. Therefore $I_{\alpha} \subset I_{1}$. If α is a basic class of A with $I_{\alpha} \subset I_{1}$, then $I_{\alpha} \subset J \subset I_{0}$, by (II). Let α be a basic class of A with $I_{\alpha} \subset I_{0}$. Then $I_{\alpha} \subset J$, since $r(A_{j}) < r(A)$. A_{k} is the direct sum of the irreducible operators $A_{ik} = A_{j}[J_{k}(k = 1, \ldots, m)]$, so we get $A_{\alpha} = A_{ik}$ for some $k \in \{1, \ldots, m\}$. Then $I_{\alpha} = J_{k}$ for this k. If $I_{\alpha} = J_{k}$ for some $k \in \{1, \ldots, m\}$, then $r(A_{\alpha}) = r(A)$ and A_{α} is irreducible. Therefore α is a strongly connected set in the directed graph associated with A. From the triangular structure of A_{1} with respect to the direct sum $I_{1} = I_{1} \oplus I_{1} \oplus \cdots \oplus I_{m} \oplus I_{6}$ it follows that α is a strongly connected component in this graph.

(IV) Let α have access to a distinguished basic class β of A. Assume $\alpha \neq \beta$. Then α is nonbasic. Furthermore, there exists a nonnegative eigenvector x of A corresponding to r, such that x_{α} is strictly positive; see [7, Theorem 3.1]. Proposition 3.2(I) implies $x \in I_{1}$. Therefore $x \in N(r \Leftrightarrow A)$. From Proposition 2.2(II) it follows that $N(r \Leftrightarrow A_{1}) \subset J \oplus I_{0}$. Therefore $I_{\alpha} \subset J \oplus I_{0}$. From the last part of the proof of (III) we see that $I_{\alpha} \cap J \neq \{0\}$ would imply $r(A_{\alpha}) = r(A)$. Hence we obtain $I_{\alpha} \subset I_{0}$, since α is nonbasic.

B.-S. Tam [8, Lemma 2.1] showed that A has fully cyclic peripheral spectrum (see [6, Definition 2.5]), i.e., for all $\lambda \in \mathbb{C}$ with $|\lambda| = r(A)$

$$\{\|u\| : u \in N(\lambda \Leftrightarrow A)\} \subset N(\lambda \Leftrightarrow A).$$

Thus, if A has a fully cyclic peripheral spectrum, then $N(\lambda \Leftrightarrow A)$ is a sublattice of \mathbb{C}^{r}. By Proposition 3.2, the latter assertion implies statement (a) in [8, Theorems 2.4 and 2.5]. In the matrix case we have the following result as a supplement to Theorem 4.4.

Theorem 4.2. For a nonnegative square matrix the following assertions are equivalent.

(I) $N(\lambda \Leftrightarrow A_{1})$ is a sublattice, where $r = r(A)$.

(II) there does not exist a class of A which has access to two different distinguished basic classes.

Proof. We prove that the assertion (II) is equivalent to Theorem 3.4(II).

(I) \Rightarrow (II) Assume there exists a class α of A which has access to two different
distinguished basic classes \(a_1\) and \(a_2\). Then \(a\) has to be a nonbasic class, since a basic class does not have access to a distinguished basic class. By Lemma 4.1(IV) this implies \(I_a \subset I_h\). From [7, 3.1(i)] it follows that there are two nonnegative eigenvectors \(w_1\) and \(w_2\) of \(A\) corresponding to \(r\) with \(a \subset \text{supp}(w_1)\), \(a_z \subset \text{supp}(w_2)\) and \(a_i = \text{supp}(q_h(w_i))\). By Proposition 3.2(II), \(w_i \in N(r \Leftrightarrow A_1)\), \(i = 1, 2\). Since \(a_1\) and \(a_2\) are disjoint sets, we get that \(q_h(w_1)\) and \(q_h(w_2)\) are disjoint nonnegative vectors in \(N(r \Leftrightarrow A_1)\). But \(w_1\) and \(w_2\) are not disjoint, and this contradicts Theorem 3.4(II).

(II) \(\Rightarrow\) (I) If \(z\) is in \(N(r \Leftrightarrow A_h)\), then \(|z|\) belongs to \(N(r \Leftrightarrow A_1)\); see Proposition 2.2(II). Then \(\text{supp}(z) = \text{supp}(|z|)\) is the union of some distinguished basic classes. From [7, 3.1(i) and (ii)] it follows that for the unique nonnegative \(w \in N(r \Leftrightarrow A_1)\) with \(q_h(w) = |z|\) its support is the union of all classes which have access to distinguished basic classes contained in \(\text{supp}(z)\). Since \(w\) is a nonnegative eigenvector of \(A\), the ideal generated by \(w\) is \(A\)-invariant; this ideal is \(I_\sigma\), where \(\sigma = \text{supp}(w)\). Now let \(z_1\) and \(z_2\) be disjoint vectors in \(N(r \Leftrightarrow A_h)\), and assume that the unique nonnegative \(w_1\) and \(w_2\) in \(N(r \Leftrightarrow A_1)\) with \(q_h(w_i) = |z_i|\) for \(i = 1, 2\) are not disjoint. Then there exists a class \(a\) of \(A\) with \(I_{a_1} \cap I_{a_2} \neq \emptyset\), where \(\sigma_i = \text{supp}(w_i)\) for \(i = 1, 2\). Since \(I_{a_1}\) are \(A\)-invariant for \(i = 1, 2\), we have \(I_a \subset I_{a_1} \cap I_{a_2}\). Then \(a\) has access to a distinguished basic class \(a_1\) in \(\sigma_1\) and to one \(a_2\) in \(\sigma_2\). Now \(a_1 \subset \text{supp}(z_1)\). Therefore \(I_{a_1} \subset I_\sigma\). By Lemma 4.1(III), the \(a_i\) are distinguished. Thus \(a\) has access to two different distinguished basic classes of \(A\). This contradicts (II), so \(w_1\) and \(w_2\) are disjoint. Thus Theorem 3.4(II) holds.

The next theorem will show, how conditions (c) in Theorems 2.4 and 2.5 of [8] are related to our results.

Theorem 4.3. Consider for a nonnegative square matrix \(A\) and a peripheral eigenvalue \(\lambda\) of \(A\) satisfying the following statements.

(I) If \(\lambda\) is an eigenvalue of \(A_\alpha\) for some class \(\alpha\) of \(A\), then \(\alpha\) is distinguished.

(II) \(N(\lambda \Leftrightarrow A) \subset I_1\).

(III) If \(\lambda\) is an eigenvalue of \(A_\alpha\) for some class \(\alpha\) of \(A\), then all initial classes of the family

\[
F(\alpha) = \{\gamma : \gamma \text{ is a class of } A, \ \lambda \text{ is an eigenvalue of } A_\gamma, \ \gamma \geqslant \alpha\}
\]

are distinguished.

(IV) If \(\lambda\) is an eigenvalue of \(A_\beta\) for some class \(\beta\) of \(A\), then \(\lambda\) is also an eigenvalue of \(A_\beta\) for some distinguished class \(\beta\) of \(A\), which has access to \(\alpha\).

(V) \(\lambda\) is an eigenvalue of \(A_\beta\) for some distinguished class \(\beta\) of \(A\).

(VI) \(N(\lambda \Leftrightarrow A) \cap I_1 \neq \emptyset\).

Then (I) \(\Rightarrow\) (II) \(\Rightarrow\) (III) \(\Leftrightarrow\) (IV) \(\Rightarrow\) (V) \(\Leftrightarrow\) (VI).

Proof. (I) \(\Rightarrow\) (II) Let \(0 \neq u \in N(\lambda \Leftrightarrow A)\). Then for all classes \(\alpha\) of \(A\), which are final in \(\text{supp}(u)\), \(\lambda\) is an eigenvalue of \(A_\alpha\); see [8, Lemma 2.3]. Therefore, by assumption, all (final) classes in \(\text{supp}(u)\) have access to a distinguished basic class of \(A\). By Lemma 4.1(III) and (IV), we have \(u \in I_1\).

(II) \(\Rightarrow\) (III) Take an initial class \(\beta\) in \(F(\alpha)\). Notice that \(F(\alpha)\) is nonempty, since \(\alpha\)
belongs to it. Then β is basic, since $|\lambda| = r(A)$. Let ω be the union of all classes of A, which have access to β and are different from β. Set $\delta = \{1, \ldots, \ell\} \setminus (\omega \cup \beta)$. Note that one or both of the sets ω and δ can be empty. Then the corresponding matrices in the decomposition below do not appear. With respect to the decomposition $\mathcal{C}^\ell = I_1 \oplus I_2 \oplus I_\omega$ the matrix A has the block triangular form

$$
\begin{bmatrix}
A_\delta & 0 & 0 \\
A_\beta \delta & A_\beta & 0 \\
A_\omega \beta & A_\omega & A_\omega
\end{bmatrix}.
$$

By the choice of β, λ is not an eigenvalue of A_ω. Take an eigenvector u_ω of A_β corresponding to λ. Define $u_\omega = (\lambda \Leftrightarrow A_\omega)^{-1}A_\omega u_\beta$ and $u = [o^T, u_\beta^T, u_\omega^T]^T$. Then u is an eigenvector of A corresponding to λ. Now $u \in N(\lambda \Leftrightarrow A) \subseteq I_1$ by assumption. Then $o \neq [o^T, u_\beta^T, o^T]^T \in I_2 \setminus I_1$ implies $I_2 \cap I_1 \neq \{0\}$. By Lemma 4.1(I), we have $I_\beta \subseteq I_1$. Since β is basic, we get from Lemma 4.1 (III) that it is distinguished.

(III) \Rightarrow (IV) is clear.

(IV) \Rightarrow (III) Take an initial class κ of A in $F(\alpha)$. Then λ is an eigenvalue of A_κ. By assumption, there exists a distinguished basic class β of A with $\beta \supseteq \kappa$, and λ is an eigenvalue of A_β. Then $\beta \supseteq \kappa \supseteq \alpha$, thus $\beta \in F(\alpha)$. Therefore $\kappa = \beta$, since κ is initial in $F(\alpha)$.

(IV) \Rightarrow (V) is clear, since each eigenvalue of A has to be an eigenvalue of A_{α} for at least one class α of A.

(V) \Rightarrow (VI) For a distinguished basic class β let u_β be an eigenvector of A_β corresponding to λ. By Lemma 4.1(III), $A_\beta = A_{\beta h}$ for some $k \in \{1, \ldots, m\}$. Let $u_h = [u_1^T, \ldots, u_m^T]^T$ with $u_k = u_\beta$ and $u_i = 0$ if $i \neq k$. The vector u_h is an eigenvector of A_h corresponding to λ, since $A_h = A_{\beta h} \oplus \ldots \oplus A_{\alpha h}$. Define $u_\delta = (\lambda \Leftrightarrow A_\delta)^{-1}A_{\delta h} u_h$, and $u_1 = [u_1^T, u_\delta^T]^T$. Then u_1 is an eigenvector of A_1 corresponding to λ. Thus $\{0\} \neq N(\lambda \Leftrightarrow A_1) = N(\lambda \Leftrightarrow A) \subseteq I_1$.

(VI) \Rightarrow (V) Let $u \in I_1$ be an eigenvector of A corresponding to λ. If β is a final class of A in $\text{supp}(u)$, then β is a basic class [8, Lemma 2.3]. Since $I_\beta \subseteq I_1$, β is distinguished (see Lemma 4.1(III)).

The following examples will show that the converses of the three one-way implications in Theorem 4.3 are not true in general.

Example 4.4. Let

$$
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
a & b & 0 & 0 & 1 \\
c & d & 0 & 1 & 0
\end{bmatrix}
$$

with nonnegative numbers a, b, c, and d.

Then $\alpha = \{1, 2\}$, $\beta = \{3\}$, and $\gamma = \{4, 5\}$ are the classes of A. The matrices A_{α}, A_{γ} and A have eigenvalues 1 and 0. The matrix A_β has the eigenvalue 1. Therefore all classes of A are basic. The classes β and γ are distinguished and α is not distinguished.

Further, here $I_1 = \{x \in \mathbb{C}^5 : x_1 = x_2 = 0\} = I_\beta \oplus I_\gamma$ and $I_\delta = \{0\}$. Now let
(1) \(a = d = 1 \) and \(b = c = 0 \). Then statement (I) is not true for \(\lambda = \varpi \), but \(N(\varpi) = \{ x \in C^5 : x_1 = x_2 = x_3 = 0, x_4 + x_5 = 0 \} \subset I_1 \). For \(\lambda = r(A) \) statement (I) in Theorem 4.3 is equivalent to: “All basic classes of \(A \) are distinguished.” This is equivalent to \(p = 1 \), where \(p \) is the order of the pole \(r(A) \) of the resolvent, cf. Section 2. The example also shows that even for \(\lambda = r(A) \) (II) does not imply (I), since \(N(\lambda) = \{ x \in C^5 : x_1 = x_2 = 0, x_4 \not\equiv x_5 = 0 \} \subset I_1 \) and \(p = 2 \).

(2) \(a = b = c = d = 1 \). Then statement (II) is not true for \(\lambda = \varpi \), since \(N(\varpi) = \{ x \in C^5 : x_1 + x_2 = 0, x_2 + 2x_3 = 0, x_4 + x_5 = 0 \} \). But statement (III) is true for \(\lambda = \varpi \), since \(F(\alpha) = \{ \gamma, \alpha \} \) with \(\gamma \not\equiv \alpha \) and \(F(\gamma) = \{ \gamma \} \).

(3) \(a = b = c = d = 1 \). Then statement (IV) is not true for \(\lambda = \varpi \), since \(\gamma \not\equiv \alpha \). But statement (V) is true, since \(\varpi \) is an eigenvalue of \(A_n \).

Part (b) of [8, Theorem 2.5], which states that each distinguished basic class of \(A \) is initial (in the family of all classes of \(A \)), is equivalent to \(N(r \not\rightarrow A_1) = N(r \not\rightarrow A) \neq \{ 0 \} \). This follows immediately from [7, 3.1(ii) and (ii)]. Combining this observation with Proposition 3.8 we obtain the following result.

Corollary 4.5. Let \(A \) be a nonnegative square matrix, such that each distinguished class of \(A \) is initial (in the family of all classes of \(A \)). Then \(A \) has a fully cyclic peripheral spectrum iff \(N(\lambda) \subset I_1 \) for all peripheral eigenvalues of \(A \).

This corollary is stronger than [8, Theorem 2.5] as Theorem 4.3 (I) \(\Rightarrow \) (II) and Example 4.4(1) show.

References

