Tunneling magnetoresistance in (Ga,Mn)As/Al–O/CoFeB hybrid structures

G. X. Du
Institute of Physics, Chinese Academy of Sciences, China

M. Ramesh Babu
Institute of Physics, Chinese Academy of Sciences, China

X. F. Han
Institute of Physics, Chinese Academy of Sciences, China

J. J. Deng
Institute of Semiconductors, Chinese Academy of Sciences, China

W. Z. Wang
Institute of Semiconductors, Chinese Academy of Sciences, China

See next page for additional authors

Follow this and additional works at: https://repository.uwyo.edu/physics_astronomy_facpub

Part of the Physical Sciences and Mathematics Commons

Publication Information

Authors
G. X. Du, M. Ramesh Babu, X. F. Han, J. J. Deng, W. Z. Wang, J. H. Zhao, W. D. Wang, and Jinke Tang

This article is available at Wyoming Scholars Repository: https://repository.uwyo.edu/physics_astronomy_facpub/19
Tunneling magnetoresistance in (Ga,Mn)As/Al–O/CoFeB hybrid structures
G. X. Du, M. Ramesh Babu, X. F. Han, J. J. Deng, W. Z. Wang, J. H. Zhao, W. D. Wang, and Jinke Tang

Citation: Journal of Applied Physics 105, 07C707 (2009); doi: 10.1063/1.3068418
View online: http://dx.doi.org/10.1063/1.3068418
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/105/7?ver=pdflv
Published by the AIP Publishing

Articles you may be interested in
Impact of current paths on measurement of tunneling magnetoresistance and spin torque critical current densities in GaMnAs-based magnetic tunnel junctions
J. Appl. Phys. 113, 083702 (2013); 10.1063/1.4793086

Improved tunneling magnetoresistance in (Ga,Mn)As/AlOx/CoFeB magnetic tunnel junctions
Appl. Phys. Lett. 98, 262501 (2011); 10.1063/1.3603946

Modeling of bias anomaly in (Ga,Mn)As tunneling magnetoresistance structures
J. Appl. Phys. 103, 103709 (2008); 10.1063/1.2907429

Tunneling magnetoresistance in CoFeB/GaAs/(Ga,Mn)As hybrid magnetic tunnel junctions
J. Appl. Phys. 103, 07D105 (2008); 10.1063/1.2830724

Spin-polarized transport in diluted GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions
J. Appl. Phys. 96, 498 (2004); 10.1063/1.1756692
Tunneling magnetoresistance in (Ga,Mn)As/Al–O/CoFeB hybrid structures

G. X. Du,¹ M. Ramesh Babu,¹ X. F. Han,¹,a) J. J. Deng,² W. Z. Wang,² J. H. Zhao,²,a)
W. D. Wang,³ and Jinke Tang³

¹State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
²State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
³Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, USA

(Presented 10 November 2008; received 2 September 2008; accepted 4 November 2008; published online 23 February 2009)

Tunneling magnetoresistance (TMR) in Ga₀.₉₂Mn₀.₀₈As/Al–O/Co₄₀Fe₄₀B₂₀ trilayer hybrid structure as a function of temperature from 10 to 50 K with magnetic field |H| ≤ 2000 Oe has been studied. TMR ratio of 1.6% at low fields at 10 K was achieved with the applied current of 1 μA. The behavior of junction resistance was well explained by the tunneling resistance across the barrier. Strong bias dependences of magnetoresistance and junction resistance were presented. © 2009 American Institute of Physics. [DOI: 10.1063/1.3068418]

Efficient electrical injection of spin-polarized electrons is one of the most important technologies for realizing new functional devices based on spins in semiconductors. Transition metal doped III-V compound semiconductor offers an unprecedented opportunity to explore ferromagnetism in semiconductors. Ferromagnetism due to spin-spin interactions is mediated by holes in the valence band and changing the Fermi level using codoping and electric fields or light can directly manipulate the magnetic ordering. A ferromagnetic semiconductor (Ga,Mn)As is one of the promising materials for spin-polarized carrier injector because of its high spin polarization, and Curie temperature \(T_C \) as high as 110 K was first reported in 1996 by Ohno.¹ High spin polarization predicted by the band structure calculation² with support from experimental results showing high spin polarization³ of over 85% by Andreev reflection in this kind of materials makes them more attractive for further investigation, especially their potential application in spintronic devices. Tunneling magnetoresistance effect has been observed in (Ga,Mn)As/Al,GaAs/(Ga,Mn)As epitaxial multilayers grown by low temperature molecular beam epitaxy (MBE) technique.⁴–¹⁰

Recently, demonstration of spin injection from ferromagnetic metal into (Ga,Mn)As through wide band semiconductor tunnel barrier such as ZnSe¹¹ and AlAs¹² has been successfully obtained due to the high Curie temperature of ferromagnetic metal and especially the lattice match between epitaxially grown films. Pioneering works in spin injection through interband spin-polarized tunneling in (Ga,Mn)As/Al₂O³–GaAs Easaki tunnel structures¹³–¹⁵ and diffusive spin injection¹⁶ from (Ga,Mn)As to adjacent GaAs have been demonstrated by Ohno and co-workers. Tunneling anisotropic magnetoresistance¹⁷ (TAMR) and tunnel spectroscopy¹⁸ in the system of Au/Al–O/(Ga,Mn)As were studied, and TAMR arises from spin-orbital coupling. Al–O has been widely adopted in Magnetic Tunnel Junctions (MTJs) as an insulating barrier because of the good wetting property of Al and its feasible oxidation by a plasma oxidation technique.¹⁹ However, knowledge on the hybrid MTJ structure of (Ga,Mn)As consisting of aluminum oxide as a tunneling barrier is still missing. In this work, we report the fabrication of MTJ based on Ga₀.₉₂Mn₀.₀₈As/Al–O/Co₄₀Fe₄₀B₂₀ hybrid structures grown by MBE and magnetron sputtering together. The results of bias and temperature dependences of TMR ratio have been studied systematically.

The hybrid structure was grown on semi-insulating GaAs substrate, consisting of GaAs(50)/Ga₀.₉₂Mn₀.₀₈As (400)/GaAs(1)/Al–O(1.2)/Co₄₀Fe₄₀B₂₀(5)/Ir₂₂Mn₇₈ (10)/Ru(10) (thickness in nanometers). First, 50 nm thick GaAs buffer layer was deposited with substrate temperature \(T_S \) = 560 °C in a V80MARKI MBE system in order to grow (Ga,Mn)As on the smooth surface. Then 400 nm thick Ga₁₋ₓMnₓAs layer (where \(x = 0.08 \)) and 1 nm thick GaAs were grown at \(T_S = 250 \) °C, where 1 nm GaAs is used to prevent Mn diffusion into alumina layer after growth. The growth details could be found elsewhere.²⁰ After the growth of Ga₀.₉₂Mn₀.₀₈As film in the MBE chamber, the sample was clearly packed and transferred into the load lock chamber of the sputtering system when the clean surface was confirmed by atomic force microscope. The amorphous alumina oxide layer was formed by plasma oxidation in the sputtering system, followed by the deposition of Co₄₀Fe₄₀B₂₀/Ir₂₂Mn₇₈/Ru metallic multilayers, where Ru acts as capping layer. Junctions with size of 8 × 16 μm² were patterned by conventional UV lithography combined with argon ion milling. A four probe dc transport measurement was performed as a function of temperatures (down to 10 K) and magnetic field (up to 2000 Oe) in a physical properties measurement system by Quantum Design. Here, positive bias (current) refers to current flowing from the bottom electrode to the top electrode.

Figure 1 shows the temperature dependence of the junction resistance and (Ga,Mn)As single layer resistance at zero fields. The right upper inset is the schematic of the junction...
pattern and four probe geometry used for this measurement. The top electrode of the junction is directly connected to Cu through a relatively large pad with size of 300\(\times \)300 \(\mu \text{m}^2 \). The top and bottom electrodes were isolated by SiO\(_2\). Compared to the junction size of 8\(\times \)16 \(\mu \text{m}^2 \), the pad resistance is only 0.1\% and is neglected. (Ga,Mn)As single layer resistance was measured by two probe sensing measurement through this pad. The as-grown (Ga,Mn)As is a highly self-compensated ferromagnetic semiconductor which exhibits semiconducting behavior at low temperatures with Curie temperature of 35 K, shown in Fig. 1b. A hump was observed at 35 K, which has been confirmed by several groups in the range of \(x = 0.015 - 0.071 \) Mn concentrations. Figure 1(a) shows typical junction resistance as a function of temperature which shows very strong temperature dependence and increases with decreasing temperature.

\[R(H) \text{ vs } T \]

FIG. 1. Temperature dependence of the junction resistance and (Ga,Mn)As single layer resistance in zero field. Inset shows the schematic of the junction pattern and measurement geometry.

\[R(H) \text{ vs } H \]

FIG. 2. Typical junction resistance vs magnetic field in the field range of 2000 Oe at 10 K; forward corresponds to sweeping field from negative to positive and backward vice versa.

\[R(H) \text{ vs } T \]

FIG. 3. Minor \(R-H \) loops in the switching field range of the (Ga,Mn)As layer were measured at \(T = 10, 15, 20, \) and 25 K, respectively.

The temperature dependence of the TMR is shown in Fig. 3. Clear resistance change with sensing current of +1 \(\mu \text{A} \) associated with magnetization switching of (Ga,Mn)As has been observed. Coercivity (\(H_C \)) of (Ga,Mn)As decreases with increasing temperature, where \(H_C \) are 30, 20, 10, and 7.5 Oe at 10, 15, 20, and 25 K, respectively. The relatively small \(H_C \) is expected for thick (Ga,Mn)As layer where the thickness of the bottom (Ga,Mn)As layer was 400 nm. TMR ratios, 1.6\%, 1.4\%, 1.2\%, and 1.0\% at 10, 15, 20, and 25 K, respectively, were obtained which decrease faster with increasing temperature and TMR almost drops to zero as temperature approaches \(T_C \). Bias dependences of junction resistance and TMR ratio are shown in Fig. 4. Junction resistance decreases rapidly with increasing dc bias, showing much stronger bias dependence than that in conventional 3d transition metal MTJs, e.g., CoFe/Al–O/CoFe. The strong bias dependence of parallel state resistance at 10 K as shown in Fig. 4(a) in terms of zero bias anomaly is widely believed to be due to the corre-
In summary, we have observed TMR in Ga$_{0.92}$Mn$_{0.08}$As/Al–O/Co$_{40}$Fe$_{20}$B$_{20}$ hybrid structures at low temperatures from 10 to 25 K. Clear switching behavior of R-H minor loop in the low field range shows TMR ratio of 1.6% at 10 K. Strong bias dependences of both resistance and TMR ratio were presented, probably due to the correlation gap in (Ga,Mn)As and its low Fermi energy, similar to that observed in (Ga,Mn)As/AlAs/MnAs hybrid structures. V_{half} at which TMR ratio drops to one-half of its maximum is 2.7 mV.

This project was supported by the State Key Project of Fundamental Research of Ministry of Science and Technology (MOST, Grant Nos. 2006CB932200 and 2007CB924903) and the National Natural Science Foundation (NSFC, Grant No. 0574156). X. F. Han gratefully thanks the partial support of the Outstanding Young Researcher Foundation (NSFC, Grant Nos. 50721001 and 30528101) and K. C. Wong Education Foundation, Hong Kong.