Ferromagnetism and transport properties of Fe-doped reduced-rutile TiO$_{2-\delta}$ thin films

Zhenjun Wang
University of New Orleans

Jinke Tang
University of Wyoming, jtang2@uwyo.edu

Le Duc Tung
University of New Orleans

Weilie Zhou
University of New Orleans

Leonard Spinu
University of New Orleans

Follow this and additional works at: http://repository.uwyo.edu/physics_astronomy_facpub
Part of the [Physical Sciences and Mathematics Commons](http://repository.uwyo.edu/physics_astronomy_facpub)

Publication Information
Ferromagnetism and transport properties of Fe-doped reduced-rutile TiO$_{2-\delta}$ thin films

Zhenjun Wang, Jinke Tang, Le Duc Tung, Weilie Zhou, and Leonard Spinu

Citation: Journal of Applied Physics 93, 7870 (2003); doi: 10.1063/1.1556122
View online: http://dx.doi.org/10.1063/1.1556122
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/93/10?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Study of valence band structure of Fe doped anatase TiO$_2$ thin films
J. Appl. Phys. 110, 043910 (2011); 10.1063/1.3624775

Room temperature ferromagnetism in N-doped rutile TiO$_2$ films
J. Appl. Phys. 109, 07C302 (2011); 10.1063/1.3535427

Carrier induced ferromagnetism in Nb doped Co : Ti O$_2$ and Fe : Ti O$_2$ epitaxial thin film

Ferromagnetic and electrical properties in ferromagnetic semiconductor Ti$_{1-x}$Co$_x$O$_{2-\delta}$: Sb thin films grown by pulsed laser deposition
J. Appl. Phys. 97, 10D326 (2005); 10.1063/1.1855455

Ferromagnetism in chromium-doped reduced-rutile titanium dioxide thin films
J. Appl. Phys. 95, 7381 (2004); 10.1063/1.1667806
Ferromagnetism and transport properties of Fe-doped reduced-rutile TiO$_2$ thin films

Zhenjun Wanga and Jinke Tangb

Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

Le Duc Tung, Weilie Zhou, and Leonard Spinu

Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148

(Presented on 14 November 2002)

We have investigated Fe$_x$Ti$_{1-x}$O$_2$ ($x = 0.02$, 0.06, and 0.08) thin films grown on α-Al$_2$O$_3$ substrates by pulsed-laser deposition. X-ray diffraction results indicate that the films are single phase and of reduced-rutile type. Detailed microstructural observations reveal no measurable magnetic impurities in the films. Vibrating sample magnetometer measurements show the films are ferromagnetic at room temperature with coercivity ranging from 340 to 770 Oe. The temperature dependence of the resistivity shows nearly metallic behavior at room temperature but semiconducting behavior at lower temperatures. The extraordinary Hall effect with coercivities similar to those in magnetic hysteresis curves was observed at room temperature. The carriers are p type with a carrier density of about 10^{22}/cm3. © 2003 American Institute of Physics.

[DOI: 10.1063/1.1556122]

I. INTRODUCTION

It has been reported that the ferromagnetic state exists in Co-doped anatase TiO$_2$ semiconductors at room temperature. X-ray absorption spectroscopy study of Co-doped anatase films suggests that Co is in the 2+ oxidation state rather than forms metal clusters. Room temperature ferromagnetism has also been indicated when rutile, another common structure of TiO$_2$, is doped with Co. TiO$_2$ has three common forms: anatase, rutile, and brookite. Stoichiometric rutile has a band gap of 3.05 eV. It crystallizes in a tetragonal lattice and is easily reduced by forming oxygen vacancies or titanium interstitials. Large concentrations of vacancies or interstitials condense into platelets that are removed from the structure by forming Magnéli shear planes. The shear planes are (101) planes when referring to the stoichiometric rutile tetragonal lattice, and the reduced rutile forms a homologous series of compounds Ti$_n$O$_{2n-1}$ ($n = 4, ..., 10$) with a triclinic structure. Electrical properties of Fe-doped TiO$_2$ have been studied before, and no ferromagnetism was reported. In this study, we report ferromagnetism and associated transport properties of Fe$_x$Ti$_{1-x}$O$_2$ ($x = 0.02$, 0.06, and 0.08) thin films of substantially reduced-rutile structures.

II. EXPERIMENT

Fe$_x$Ti$_{1-x}$O$_2$ ($x = 0.02$, 0.06, and 0.08) thin films were grown on α-Al$_2$O$_3$(012) substrates by pulsed-laser deposition. Fe$_x$Ti$_{1-x}$O$_2$ targets were prepared using standard ceramic synthesis techniques. The films were prepared in vacuum at a substrate temperature of 980 K. The pressure during deposition was 2×10^{-6} Torr. The pulsed excimer laser uses KrF ($\lambda = 248$ nm) and produces a laser beam intensity of 1–2 J/cm2 and repetition rate of 4–20 Hz. The deposition rate is between 0.3 and 0.6 Å/s, and the film thickness varies from 120 to 300 nm. The crystalline structure was investigated by x-ray diffraction (XRD) with Cu K$_\alpha$ radiation and by transmission electron microscopy. The transport properties were measured with a physical property measurement system (PPMS) from Quantum Design. The Hall effect of the films was measured with a four-probe method at room temperature.

III. RESULTS AND DISCUSSION

Figure 1 shows XRD patterns of Fe$_x$Ti$_{1-x}$O$_2$ with $x = 0.02$ and 0.06. The films are single phase and of reduced-rutile type with a (202) plane, referred to as a stoichiometric rutile tetragonal cell, parallel to the plane of the film. The

![FIG. 1. XRD patterns of Fe$_x$Ti$_{1-x}$O$_2$ with $x = 0.02$ and 0.06, showing reduced-rutile phase and no impurity peaks.](image-url)
two vertical lines show (101) and (202) reflections of stoichiometric rutile. The peak at the center of the scans is that of the substrate α-Al₂O₃(024). The (202) peaks are shifted toward lower 2θ angles relative to stoichiometric rutile. The (101) peak is absent in sample x = 0.02 (and x = 0.08, not shown) due to the substantial reduction that forms the Magnéli shear plane. The degree to which sample x = 0.06 is reduced is different from that with x = 0.02 and 0.08. However both (101) and (202) peaks are shifted toward lower angles, which is consistent with the formation of Magnéli reduced rutile⁵ and may also be influenced by the Fe doping. Transmission electron microscopy (TEM) observation indicates no sign of segregation of impurity phase up to x = 0.08.

The magnetization versus field (M–H) curves measured at 300 K exhibit hysteresis with coercivity ranging from 340 to 770 Oe as shown in Fig. 2. The saturation magnetization of the films is estimated to be 2.3–2.4 μᵣ per Fe atom. The M–H curves indicate that these films are ferromagnetic at 300 K. The remaining internal magnetization at zero external magnetic field, remanence, varies from 26% to 52%.

All films exhibit nearly metallic conductance at room temperature and semiconducting behavior at lower temperatures. Positive magnetoresistance (MR) is observed at low temperatures in high fields. Figure 3 shows the temperature dependence of the resistivity for FeₓTi₁₋ₓO₂₋δ film, and the inset of Fig. 3 shows the MR for the same sample, which is about 5% at 2 K in a field of 5 T applied normal to the plane. The MR of the sample is negative and less than 0.1% at room temperature.

All samples show the extraordinary Hall effect, one of the characteristics of a ferromagnetic semiconductor. Figure 4 shows the Hall voltage hysteresis loop for sample Fe₀.₀₆Ti₀.₉₄O₂₋δ. The hysteretic behavior, demonstrated by the open loop in the inset of Fig. 4, is an unambiguous signature of the interaction between itinerant carriers and localized electron spins of the Fe ions. The Hall effect data obtained in high magnetic fields (ordinary Hall effect) suggest the carriers of magnetic semiconductors are p type. The carrier density calculated from the slope in the high field region of the Hall data is about 10²²/cm³. The p-type carriers found in our samples suggest that the mechanism responsible for the ferromagnetism may be related to hole-mediated Zener-type Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction.⁶ According to such a model holes are favorable for mediating the exchange interaction between local moments and induce ferromagnetism. It should be noted here that the p-type conduction of our samples is fundamentally different from the n type observed in Co-doped anatase,⁷ although more theoretical and experimental studies are needed to understand the phenomena observed.

IV. CONCLUSIONS

Room temperature ferromagnetic semiconductor FeₓTi₁₋ₓO₂₋δ (x = 0.02, 0.06, and 0.08) thin films were successfully grown by pulsed-laser deposition. Magnetic and
transport properties of the films were investigated. The saturation magnetization of the films was estimated to be 2.3–2.4 μ_B per Fe atom at room temperature. The resistivity shows semiconducting behavior for all of the samples at low temperature and becomes nearly metallic at room temperature. The room temperature ferromagnetic nature of the films was confirmed by the hysteretic behavior of the extraordinary Hall effect. The carriers of magnetic semiconductors are p type.

ACKNOWLEDGMENTS

This work was supported by Sharp Laboratories of America and Louisiana Board of Regents Support Fund Grant No. LEQSF(2000-03)-RD-B-10.