Basic comparison theorems for weak and weaker matrix splittings

Zbigniew I. Woznicki
r05zw@cx1.cyf.gov.pl

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1060
BASIC COMPARISON THEOREMS FOR WEAK AND WEAKER MATRIX SPLITTINGS

ZBIGNIEW I. WOŹNICKI

Abstract. The main goal of this paper is to present comparison theorems proven under natural conditions such as $N_2 \geq N_1$ and $M_1^{-1} \geq M_2^{-1}$ for weak and weaker splittings of $A = M_1 - N_1 = M_2 - N_2$ in the cases when $A^{-1} \geq 0$ and $A^{-1} \leq 0$.

Key words. Systems of linear equation, convergence conditions, comparison theorems, weak splittings, weaker splittings.

AMS subject classifications. 65C20, 65F10, 65F15

1. Introduction. A large class of iterative methods for solving systems of linear equations of the form

$$Ax = b,$$

where $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix and $x, b \in \mathbb{R}^n$, can be formulated by means of the splitting

$$A = M - N \text{ with } M \text{ nonsingular},$$

and the approximate solution $x^{(t+1)}$ is generated as follows

$$Mx^{(t+1)} = Nx^{(t)} + b, \quad t \geq 0,$$

or equivalently,

$$x^{(t+1)} = M^{-1}Nx^{(t)} + M^{-1}b, \quad t \geq 0,$$

where the starting vector $x^{(0)}$ is given.

The above iterative method is convergent to the unique solution $x = A^{-1}b$ for each $x^{(0)}$ if and only if $\rho(M^{-1}N) < 1$, which means that the splitting of $A = M - N$ is convergent. The convergence analysis of the above method is based on the spectral radius of the iteration matrix $\rho(M^{-1}N)$. As is well known, the smaller is $\rho(M^{-1}N)$, the faster is the convergence; see, e.g., [1].

The definitions of splittings, with progressively weaker conditions and consistent from the viewpoint of names, are collected in the following definition.

DEFINITION 1.1. Let $M, N \in \mathbb{R}^{n \times n}$. Then the decomposition $A = M - N$ is called

(a) a regular splitting of A if $M^{-1} \geq 0$ and $N \geq 0$,

Received by the editors on 28 April 2000. Accepted for publication on 1 February 2001. Handling Editor: Miroslav Fiedler. This paper was presented at the Eleventh Haifa Matrix Theory Conference, Technion, Haifa, Israel, June 21-25, 1999.

† Institute of Atomic Energy 05-400 Otwock-Świerk, Poland (woznicki@hp2.cyf.gov.pl).
(b) a nonnegative splitting of \(A \) if \(M^{-1} \geq 0, M^{-1}N \geq 0 \) and \(NM^{-1} \geq 0 \),
(c) a weak nonnegative splitting of \(A \) if \(M^{-1} \geq 0 \) and either \(M^{-1}N \geq 0 \) (the first type) or \(NM^{-1} \geq 0 \) (the second type),
(d) a weak splitting of \(A \) if \(M \) is nonsingular, \(M^{-1}N \geq 0 \) and \(NM^{-1} \geq 0 \),
(e) a weaker splitting of \(A \) if \(M \) is nonsingular and either \(M^{-1}N \geq 0 \) (the first type) or \(NM^{-1} \geq 0 \) (the second type),
(f) a convergent splitting of \(A \) if \(\varrho(M^{-1}N) = \varrho(NM^{-1}) < 1 \).

The splittings defined in the successive items extend progressively a class of splittings of \(A = M - N \) for which the matrices \(N \) and \(M^{-1} \) may lose the property of nonnegativity. Distinguishing both types of weak nonnegative and weaker splittings leads to further extensions allowing us to analyze cases when \(M^{-1}N \) may have negative entries if only \(NM^{-1} \) is a nonnegative matrix.

Different splittings were extensively analyzed by many authors, see, e.g., [2] and the references therein.

Conditions ensuring that a splitting of a nonsingular matrix \(A = M - N \) is convergent are unknown in a general case. As was pointed out in [2], the splittings defined in first three items of Definition 1.1 are convergent if and only if \(A^{-1} \geq 0 \), which means that both conditions \(A^{-1} \geq 0 \) and \(\varrho(M^{-1}N) = \varrho(NM^{-1}) < 1 \) are equivalent. We write this formally as the following lemma.

Lemma 1.2. Each weak nonnegative (as well as nonnegative and regular) splitting of \(A = M - N \) is convergent if and only if \(A^{-1} \geq 0 \). In other words, if \(A \) is not a monotone matrix, it is impossible to construct a convergent weak nonnegative splitting.

In the case of weak and weaker splittings, the assumption \(A^{-1} \geq 0 \) is not a sufficient condition in order to ensure the convergence of a given splitting of \(A \); it is also possible to construct a convergent weak or weaker splitting when \(A^{-1} \geq 0 \). Moreover, as can be shown by examples the conditions \(A^{-1}N \geq 0 \) or \(NA^{-1} \geq 0 \) may not ensure that a given splitting of \(A \) will be a weak or weaker splitting.

The properties of weaker splittings are summarized in the following theorem.

Theorem 1.3. Let \(A = M - N \) be a weaker splitting of \(A \). If \(A^{-1} \geq 0 \), then
1. If \(M^{-1}N \geq 0 \), then \(A^{-1}N \geq M^{-1}N \) and if \(NM^{-1} \geq 0 \), then \(NA^{-1} \geq NM^{-1} \).
2. \[\varrho(M^{-1}N) = \frac{\varrho(A^{-1}N)}{1 + \varrho(A^{-1}N)} = \frac{\varrho(NA^{-1})}{1 + \varrho(NA^{-1})} . \]

Thus, we can conclude that for a convergent weaker splitting of a monotone matrix \(A \) there are three conditions \(M^{-1}N \geq 0 \) (or \(NM^{-1} \geq 0 \), \(A^{-1}N \geq 0 \) (or \(NA^{-1} \geq 0 \)) and \(\varrho(M^{-1}N) = \varrho(NM^{-1}) < 1 \), and any two conditions imply the third.

The main goal of this paper is to present comparison theorems proven under natural conditions such as \(N_2 \geq N_1 \) and \(M_1^{-1} \geq M_2^{-1} \) for weak and weaker splittings of \(A = M_1 - N_1 = M_2 - N_2 \) in the cases when \(A^{-1} \geq 0 \) and \(A^{-1} \leq 0 \).

2. Comparison theorems

When both convergent weaker splittings of a monotone matrix

\begin{equation}
A = M_1 - N_1 = M_2 - N_2
\end{equation}
are of the same type, the inequality
\[(2.2) \quad N_2 \geq N_1\]
implies either
\[A^{-1}N_2 \geq A^{-1}N_1 \geq 0 \quad \text{or} \quad N_2A^{-1} \geq N_1A^{-1} \geq 0.\]

Hence, by the Perron-Frobenius theory of nonnegative matrices (see, e.g., [1]), we have \(\varrho(A^{-1}N_1) \leq \varrho(A^{-1}N_2)\) or \(\varrho(N_1A^{-1}) \leq \varrho(N_2A^{-1})\) and by Theorem 1.3 we can conclude the following result.

Theorem 2.1. [2] Let \(A = M_1 - N_1 = M_2 - N_2\) be two convergent weaker splittings of \(A\) of the same type, that is, either \(M_1^{-1}N_1 \geq 0\) and \(M_2^{-1}N_2 \geq 0\) or \(N_1M_1^{-1} \geq 0\) and \(N_2M_2^{-1} \geq 0\), where \(A^{-1} \geq 0\). If \(N_2 \geq N_1\), then
\[\varrho(M_1^{-1}N_1) \leq \varrho(M_2^{-1}N_2).\]

This theorem, proven originally by Varga [1] for regular splittings, carries over to the case when both weaker splittings are of the same type. As is pointed out in [3] when both splittings in (2.1) are of different types, the condition (2.2) may not hold.

In the case when \(A^{-1} \leq 0\), then the inequality (2.2) implies either
\[0 \leq A^{-1}N_2 \leq A^{-1}N_1 \quad \text{or} \quad 0 \leq N_2A^{-1} \leq N_1A^{-1}.\]

Hence, one can deduce the following theorem.

Theorem 2.2. Let \(A = M_1 - N_1 = M_2 - N_2\) be two convergent weaker splittings of \(A\) of the same type, that is, either \(M_1^{-1}N_1 \geq 0\) and \(M_2^{-1}N_2 \geq 0\) or \(N_1M_1^{-1} \geq 0\) and \(N_2M_2^{-1} \geq 0\), where \(A^{-1} \leq 0\). If \(N_2 \geq N_1\), then
\[\varrho(M_1^{-1}N_1) \geq \varrho(M_2^{-1}N_2).\]

Similarly as in the case of \(A^{-1} \geq 0\), it can be shown that when both splittings in (2.1) are of different types, the condition (2.2) may not arise.

In the case of the weaker condition
\[(2.3) \quad M_1^{-1} \geq M_2^{-1}\]
the contrary behavior is observed. As is demonstrated on examples in [2], when both weak nonnegative splittings of a monotone matrix \(A\) are the same type, with \(M_1^{-1} \geq M_2^{-1}\) (or even \(M_1^{-1} > M_2^{-1}\)) it may occur that \(\varrho(M_1^{-1}N_1) > \varrho(M_2^{-1}N_2)\).

Let us assume that both convergent weaker splittings in (2.1) are of different types such that \(M_1^{-1}N_1 \geq 0\) and \(N_2M_2^{-1} \geq 0\), and let \(v_1 \geq 0\) and \(y_2 \geq 0\) be the eigenvectors such that
\[(2.4) \quad v_1^T M_1^{-1} N_1 = \lambda_1 v_1^T\]
and
\[(2.5) \quad N_2 M_2^{-1} y_2 = \lambda_2 y_2,\]
where \(\lambda_1 = \varrho(M_1^{-1}N_1) \) and \(\lambda_2 = \varrho(M_2^{-1}N_2) = \varrho(N_2M_2^{-1}) \). Multiplying (2.4) on the right by \(A^{-1}y_2 \) and (2.5) on the left by \(v^T_1A^{-1} \), one obtains
\[
v^T_1M_1^{-1}N_1A^{-1}y_2 = \lambda_1v^T_1A^{-1}y_2
\]
and
\[
v^T_1A^{-1}N_2M_2^{-1}y_2 = \lambda_2v^T_1A^{-1}y_2,
\]
and after subtraction we obtain
\[
v^T_1(A^{-1}N_2M_2^{-1} - M_1^{-1}N_1A^{-1})y_2 = (\lambda_2 - \lambda_1)v^T_1A^{-1}y_2.
\]
From (1.1) we have
\[
M^{-1} = (A + N)^{-1} = A^{-1}(I + NA^{-1})^{-1} = (I + A^{-1}N)^{-1}A^{-1},
\]
or
\[
A^{-1} = M^{-1} + M^{-1}NA^{-1} = M^{-1} + A^{-1}NM^{-1}
\]
which implies that
\[
A^{-1}N_2M_2^{-1} - M_1^{-1}N_1A^{-1} = M_1^{-1} - M_2^{-1}.
\]
Hence, one obtains
\[(2.6) \quad v^T_1(M_1^{-1} - M_2^{-1})y_2 = (\lambda_2 - \lambda_1)v^T_1A^{-1}y_2.\]

Let us consider the following cases.

Case I. When \(A^{-1} > 0 \), then \(v^T_1A^{-1}y_2 > 0 \).
1. If \(M_1^{-1} > M_2^{-1} \), then \(M_1^{-1} - M_2^{-1} > 0 \) and \(v^T_1(M_1^{-1} - M_2^{-1})y_2 > 0 \), hence \(\lambda_2 - \lambda_1 > 0 \) and \(\lambda_2 > \lambda_1 \).
2. If \(M_1^{-1} \geq M_2^{-1} \), then \(M_1^{-1} - M_2^{-1} \geq 0 \) and
 a) if \(v^T_1(M_1^{-1} - M_2^{-1})y_2 > 0 \), hence \(\lambda_2 - \lambda_1 > 0 \) and \(\lambda_2 > \lambda_1 \).
 b) if \(v^T_1(M_1^{-1} - M_2^{-1})y_2 = 0 \), hence \(\lambda_2 = \lambda_1 \).

Case II. When \(A^{-1} \geq 0 \), then \(v^T_1A^{-1}y_2 \geq 0 \).
1. If \(v^T_1(M_1^{-1} - M_2^{-1})y_2 > 0 \), then \(v^T_1A^{-1}y_2 > 0 \), hence \(\lambda_2 - \lambda_1 > 0 \) and \(\lambda_2 > \lambda_1 \).
2. If \(v^T_1(M_1^{-1} - M_2^{-1})y_2 = 0 \), then
 a) for \(v^T_1A^{-1}y_2 > 0 \), \(\lambda_2 - \lambda_1 = 0 \) and \(\lambda_2 = \lambda_1 \).
 b) for \(v^T_1A^{-1}y_2 = 0 \), the relation (2.6) is satisfied for arbitrary values of \(\lambda_1 \) and \(\lambda_2 \).

The following examples of regular splittings illustrate the case II.2.b).

\[
A = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = M_1 - N_1 = M_2 - N_2, \quad \text{where}
\]
\[
M_1 = \begin{bmatrix} 6 & 0 \\ 0 & 5 \end{bmatrix}, \quad N_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad M_1^{-1}N_1 = \begin{bmatrix} \frac{1}{5} & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad v^T_1 = \begin{bmatrix} 1 & 0 \end{bmatrix},
\]
Basic comparison theorems for weak and weaker matrix splittings

\[M_2 = \begin{bmatrix} 6 & 0 \\ 0 & 7 \end{bmatrix}, \quad N_2 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad M_2^{-1}N_2 = \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \quad \text{and} \quad y_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \]

Evidently, \(v_1^T(M_1^{-1} - M_2^{-1})y_2 = [1 \ 0] \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \)

and \(v_2^TA^{-1}y_2 = [1 \ 0] \begin{bmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0. \)

However, a simple modification allows us to avoid this apparent difficulty appearing in the case II.2.b). Assuming a matrix \(B > 0 \), then instead the equations (2.4) and (2.5) the following equations may be taken in consideration

\[
(2.7) \quad \bar{v}_1^T(\varepsilon A^{-1}B + M_1^{-1}N_1) = \bar{\lambda}_1 \bar{v}_1^T
\]

and

\[
(2.8) \quad (\varepsilon BA^{-1} + N_2M_2^{-1})\bar{y}_2 = \bar{\lambda}_2 \bar{y}_2.
\]

Since for \(\varepsilon > 0 \) both matrices \(\varepsilon A^{-1}B + M_1^{-1}N_1 \) and \(\varepsilon BA^{-1} + N_2M_2^{-1} \) are irreducible, their eigenvalues \(\bar{\lambda}_1 \) and \(\bar{\lambda}_2 \) corresponding to spectral radii are strictly increasing functions of \(\varepsilon \geq 0 \) [1], and \(\bar{\lambda}_1 = \lambda_1, \bar{\lambda}_2 = \lambda_2, \bar{v}_1^T = v_1^T \) and \(\bar{y}_2 = y_2 \) with \(\varepsilon = 0 \). Multiplying (2.7) on the right by \(A^{-1}\bar{y}_2 \) and (2.8) on the left by \(\bar{v}_1^T A^{-1} \) and proceeding similarly as with the derivation of (2.6), one obtains finally

\[
(2.9) \quad \bar{v}_1^T(M_1^{-1} - M_2^{-1})\bar{y}_2 = (\bar{\lambda}_2 - \bar{\lambda}_1)\bar{v}_1^T A^{-1}\bar{y}_2.
\]

Since for \(\varepsilon > 0 \) both eigenvectors \(\bar{v}_1 \) and \(\bar{y}_2 \) are positive, it can be concluded that \(\bar{v}_1^T(M_1^{-1} - M_2^{-1})\bar{y}_2 > 0 \) and \(\bar{v}_1^T A^{-1}\bar{y}_2 > 0 \), which implies that \(\lambda_2 - \lambda_1 > 0 \) hence \(\bar{\lambda}_2 > \bar{\lambda}_1 \). Taking the limit for \(\varepsilon \to 0 \), it follows that \(\bar{\lambda}_1 \to \lambda_1 \) and \(\bar{\lambda}_2 \to \lambda_2 \) which allows us to conclude that \(\lambda_2 \geq \lambda_1 \).

In the case when both convergent weaker splittings are of different type but such that \(N_1M_1^{-1} \geq 0 \) and \(M_2^{-1}N_2 \geq 0 \), then instead the equations (2.4) and (2.5) we can consider the equations

\[
N_1M_1^{-1}y_1 = \lambda_1 y_1 \quad \text{and} \quad v_2^TM_2^{-1}N_2 = \lambda_2 v_2^T
\]

providing us the following equation

\[
v_2^T(M_1^{-1} - M_2^{-1})y_1 = (\lambda_2 - \lambda_1)v_2^TA^{-1}y_1,
\]

from which in a similar way we can conclude that \(\lambda_2 \geq \lambda_1 \).

Thus, from the above considerations we obtain the following result.

Theorem 2.3. [2] Let \(A = M_1 - N_1 = M_2 - N_2 \) be two convergent weaker splittings of different types, that is, either \(M_1^{-1}N_1 \geq 0 \) and \(N_2M_2^{-1} \geq 0 \) or \(N_1M_1^{-1} \geq 0 \) and \(M_2^{-1}N_2 \geq 0 \), where \(A^{-1} \geq 0 \). If \(M_1^{-1} \geq M_2^{-1} \), then

\[
\rho(M_1^{-1}N_1) \leq \rho(M_2^{-1}N_2).
\]
In particular, if \(A^{-1} > 0 \) and \(M_1^{-1} > M_2^{-1} \), then

\[\rho(M_1^{-1}N_1) < \rho(M_2^{-1}N_2). \]

Assuming now that both convergent weaker splittings of different types in (2.1) are derived from a non-monotone matrix \(A \). Referring back to (2.6) the following cases can be analyzed.

Case III. When \(A^{-1} < 0 \), then \(v_1^TA^{-1}y_2 < 0 \).

1. If \(M_1^{-1} > M_2^{-1} \), then \(M_1^{-1} - M_2^{-1} > 0 \) and \(v_1^T(M_1^{-1} - M_2^{-1})y_2 > 0 \), hence \(\lambda_2 - \lambda_1 < 0 \) and \(\lambda_2 < \lambda_1 \).
2. If \(M_1^{-1} \geq M_2^{-1} \), then \(M_1^{-1} - M_2^{-1} \geq 0 \) and
 a) if \(v_1^T(M_1^{-1} - M_2^{-1})y_2 > 0 \), hence \(\lambda_2 - \lambda_1 < 0 \) and \(\lambda_2 < \lambda_1 \).
 b) if \(v_1^T(M_1^{-1} - M_2^{-1})y_2 = 0 \), hence \(\lambda_2 - \lambda_1 = 0 \) and \(\lambda_2 = \lambda_1 \).

Case IV. When \(A^{-1} \leq 0 \), then \(v_1^TA^{-1}y_2 \leq 0 \).

1. If \(v_1^T(M_1^{-1} - M_2^{-1})y_2 > 0 \), then \(v_1^TA^{-1}y_2 < 0 \), hence \(\lambda_2 - \lambda_1 < 0 \) and \(\lambda_2 < \lambda_1 \).
2. If \(v_1^T(M_1^{-1} - M_2^{-1})y_2 = 0 \), then
 a) for \(v_1^TA^{-1}y_2 < 0 \), \(\lambda_2 - \lambda_1 = 0 \) and \(\lambda_2 = \lambda_1 \).
 b) for \(v_1^TA^{-1}y_2 = 0 \), the relation (2.6) is satisfied for arbitrary values of \(\lambda_1 \) and \(\lambda_2 \).

The following examples of weaker splittings illustrate the case IV.2.b).

\[A = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix} = M_1 - N_1 = M_2 - N_2 \text{ where} \]

\[M_1 = \begin{bmatrix} -6 & 0 \\ 0 & -7 \end{bmatrix}, \quad N_1 = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}, \quad M_1^{-1}N_1 = \begin{bmatrix} \frac{1}{5} & 0 \\ 0 & \frac{2}{5} \end{bmatrix} \text{ and } v_1^T = [0 \quad 1], \]

\[M_2 = \begin{bmatrix} -6 & 0 \\ 0 & -5 \end{bmatrix}, \quad N_2 = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \quad M_2^{-1}N_2 = \begin{bmatrix} \frac{1}{5} & 0 \\ 0 & 0 \end{bmatrix} \text{ and } y_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \]

Evidently, \(v_1^T(M_1^{-1} - M_2^{-1})y_2 = [0 \quad 1] \begin{bmatrix} 0 & 0 \\ 0 & \frac{5}{6} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \)

and \(v_1^TA^{-1}y_2 = [0 \quad 1] \begin{bmatrix} -\frac{1}{5} & 0 \\ 0 & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \).

Assuming now a matrix \(B < 0 \), and repeating the same procedure as in the case of the case II.2.b), one can obtain again (2.9) from which, taking the limit for \(\varepsilon \to 0 \), we can conclude that \(\lambda_2 \leq \lambda_1 \) for the case IV.2.b). Hence, the following theorem holds.

Theorem 2.4. Let \(A = M_1 - N_1 = M_2 - N_2 \) be two convergent weaker splittings of different types, that is, either \(M_1^{-1}N_1 \geq 0 \) and \(N_2M_2^{-1} \geq 0 \) or \(N_1M_1^{-1} \geq 0 \) and \(M_2^{-1}N_2 \geq 0 \), where \(A^{-1} \leq 0 \). If \(M_1^{-1} \geq M_2^{-1} \), then

\[\rho(M_1^{-1}N_1) \geq \rho(M_2^{-1}N_2). \]

In particular, if \(A^{-1} \leq 0 \) and \(M_1^{-1} > M_2^{-1} \), then

\[\rho(M_1^{-1}N_1) > \rho(M_2^{-1}N_2). \]
Thus, we see that for the conditions (2.2) and (2.3) passing from the assumption $A^{-1} \geq 0$ to the assumption $A^{-1} \leq 0$ implies the change of the inequality sign in the inequalities for spectral radii.

Finally, it is evident that the following corollary holds.

Corollary 2.5. Let $A = M_1 - N_1 = M_2 - N_2$ be two convergent weak splittings or one of them is weak and the second is weaker, then Theorems 2.1, 2.2, 2.3, and 2.4 hold.

REFERENCES

