The influence of Fe content on the magnetic and electromagnetic characteristics for Fe \(x \) (CoNi)\(1-x \) ternary alloy nanoparticles

S. J. Yan
Harbin Institute of Technology, People’s Republic of China; University of Wyoming

L. Zhen
Harbin Institute of Technology, People’s Republic of China

C. Y. Xu
Harbin Institute of Technology, People’s Republic of China

J. T. Jiang
Harbin Institute of Technology, People’s Republic of China

W. Z. Shao
Harbin Institute of Technology, People’s Republic of China

See next page for additional authors

Follow this and additional works at: http://repository.uwyo.edu/physics_astronomy_facpub

Part of the [Physical Sciences and Mathematics Commons](http://repository.uwyo.edu/physics_astronomy_facpub)

Publication Information

This Article is brought to you for free and open access by the Physics and Astronomy at Wyoming Scholars Repository. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
Authors

This article is available at Wyoming Scholars Repository: http://repository.uwyo.edu/physics_astronomy_facpub/62
The influence of Fe content on the magnetic and electromagnetic characteristics for Fe$_x$(CoNi)$_{1-x}$ ternary alloy nanoparticles

Citation: Journal of Applied Physics 109, 07A320 (2011); doi: 10.1063/1.3556762
View online: http://dx.doi.org/10.1063/1.3556762
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/109/7?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Fabrication and magnetic properties of La-X (X = Co, Ni, and Fe) nanotube arrays prepared by electrodeposition methods

Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles

Influence of alloy components on electromagnetic characteristics of core/shell-type Fe–Ni nanoparticles

Characterization and microwave resonance in nanocrystalline FeCoNi flake composite

Structural and magnetic characterization of Co$_x$Ni$_{1-x}$ nanoparticles in yttria-stabilized zirconia single crystals
J. Appl. Phys. 94, 5648 (2003); 10.1063/1.1615299
The influence of Fe content on the magnetic and electromagnetic characteristics for Fe$_x$(CoNi)$_{1-x}$ ternary alloy nanoparticles

1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
2 Department of Physics & Astronomy, University of Wyoming, Laramie, Wyoming 82071, USA

(Received 23 September 2010; accepted 23 November 2010; published online 30 March 2011)

Fe$_x$(CoNi)$_{1-x}$ ($x = 0.14, 0.20, 0.25$) ternary alloy nanoparticles were fabricated by a self-catalyzed reduction method at a low temperature. The investigation of static magnetic properties revealed both saturation magnetization and coercive force enhanced with increasing Fe content. By dispersing alloy nanoparticles into paraffin matrix homogeneously, the electromagnetic properties of them were investigated experimentally and the electromagnetic absorption performances were calculated according to transmission line theory. Significant dielectric relaxation was found in the low Fe content sample, which is dominant in dielectric loss. The magnetic loss was attributed to natural resonance and the resonance peaks’ shift to high frequency region with increasing Fe content. The enhanced electromagnetic absorption performances were obtained by adjusting Fe content to balance electromagnetic parameters, because the electromagnetic parameters can be varied by structural and magnetic properties. © 2011 American Institute of Physics. [doi:10.1063/1.3556762]

Recently, the development of radar-absorbing materials for commercial and military applications has become a cutting-edge issue. Much effort has been given to seeking suitable electromagnetic wave absorption (EMA) materials, such as carbon-based materials, ferrites, and carbonyl iron powder. However, some disadvantages restrict their further applications. For instance, carbon-based materials have particularly outstanding dielectric properties, but low permeability. So their impedance matching characteristic is poor due to the high permittivity and low permeability. Although ferrites possess perfect low frequency electromagnetic performance, their permeability decreases rapidly at high frequency region due to Snoek’s limit. On the other hand, metallic and alloy magnetic materials have high permeability, large saturation magnetization, and high Snoek limit at high frequency band. Consequently, metal or alloy nanoparticles are candidate materials for the fabrication of thin absorbers and are especially promising for the excellent EMA performances in the gigahertz range.

According to transmission line theory, for EMA materials, the balance between complex permittivity and permeability is dominant in their reflection and attenuation characteristics. The electromagnetic parameters should be controlled in an appropriate range for improving EMA performances of absorbers. Compared with single-element metal, ferromagnetic alloys have advantage in the respect of matching complex permittivity and permeability by adjusting the component and microstructures of alloys. However, the high conductivity of metal and alloy materials leads to the rapid decrease of high frequency permeability owing to eddy current losses induced by the electromagnetic wave. If particle size decreases to nanometer, eddy current effect can be effectively restrained due to small particle size and high resistivity. Nanoparticles present relatively low permittivity owing to their high resistivity, and enhanced permeability and natural resonance frequency due to the increase of effective anisotropy field. For achieving ferromagnetic alloy nanoparticles, several methods have been investigated, such as polyol process, chemical vapor deposition, hydrogen thermal, and standard and modified arc-discharge techniques. However, most of these methods require high temperature and a vacuum or atmosphere environment, which typically leads to high costs, operational complexity, or difficulty in terms of practical applications. Herein, a simple low temperature reduction was reported to prepare the ferromagnetic ternary alloy nanoparticles.

Fe$_x$(CoNi)$_{1-x}$ ternary alloy nanoparticles were prepared in solution at 80 °C using NaN$_3$ H$_2$O as reducing agent. High frequency electromagnetic properties were measured by a vector network analyzer (VNA, Agilent N5230A) using transmission/reflection mode. The paraffin composite specimen with cylindrical shape containing 20 vol. % alloy particles as fillers was prepared for the measurement of EM parameters.

Figure 1 shows XRD patterns of the as-prepared samples which are FeCoNi alloy solid solution phase with a mixture of hcp and fcc crystalline structures. With the increase of Fe content, the diffraction peaks shift to lower angle zone, which is attributed to the distinction of atomic radius among cobalt (1.67 Å), nickel (1.62 Å), and iron (1.72 Å), SEM images reveal that particle size decreases with the enhancement of Fe content. Fe$_{0.25}$(CoNi)$_{0.75}$ and Fe$_{0.30}$(CoNi)$_{0.80}$ samples have spherical morphology and an average diameter about 180 and 260 nm, respectively. The Fe$_{0.14}$(CoNi)$_{0.86}$ sample has a flowerlike morphology and larger particle size with an average diameter about 1 μm. The average grain size was calculated using Debye–Scherrer’s formula.
calculated results show the average grain diameter for $x = 0.14$, 0.20, 0.25 samples is about 17, 14, and 9 nm, respectively. So the $\text{Fe}_x(\text{CoNi})_{1-x}$ ternary alloy nanoparticles should be polycrystalline aggregates and consist of nanograins.

The magnetization hysteresis loops at room temperature were measured by a Physical Property Measurement System (PPMS, quantum design), which present typical ferromagnetic behavior. With the increase of Fe content, both coercive force (H_c) and saturation magnetization (M_s) increase correspondingly. $\text{Fe}_x(\text{CoNi})_{1-x}$ ternary alloy nanoparticles have $H_c = 48.1$, 70.5, 105.5 Oe and $M_s = 111.0$, 122.3, 131.9 emu/g, respectively. The increase of H_c results from the smaller grain and particle size of the high Fe content sample, which has a larger anisotropy field and weaker magnetic couple between magnetic particles. The enhancement of M_s for iron-rich samples results from the larger atomic magnetic moment of iron than that of nickel and cobalt.

Figure 2(a) shows the real part (ε') and imaginary part (ε'') of complex permittivity. The real part ε' has a continuous decrease tendency with increasing frequency for $x = 0.14$ and 0.20 samples. However, $x = 0.20$ sample possesses smaller decrease extent. On the contrary, the real part ε' of the $\text{Fe}_{0.25}(\text{CoNi})_{0.75}$ sample is almost constant ($\varepsilon' = 7.6$) in the whole 2–18 GHz range. The imaginary parts ε'' for all the $\text{Fe}_x(\text{CoNi})_{1-x}$ samples present the same tendency in the 2–18 GHz range, i.e., ε'' gradually increases from 0.9, 0.3 and 0.2 to 4.2, 3.9 and 2.4 for $x = 0.14$, 0.20 and 0.25 samples, respectively. As we reported in FeNi$_3$ alloy sub-microspheres system, the prepared $\text{Fe}_x(\text{CoNi})_{1-x}$ nanoparticles with this method have small size, a large amount of lattice defects, and a slight oxide layer on the particle surface, all of which may result in a high resistivity. The relative low permittivity comes from the high resistivity. In addition, the values of ε' decrease with the increase of Fe content, which is consistent with the reported results of Fe–Ni core shell structured nanoparticles and Co–Fe films systems. Compared with low Fe content samples, iron-rich samples have smaller particle and grain size, and consequently, higher resistivity and lower permittivity. Besides, Fe is more easily oxidized than Co and Ni, which may be another reason for the higher resistivity of iron-rich samples. The $\text{Fe}_{0.14}(\text{CoNi})_{0.86}$ sample has a significant dielectric relaxation feature. Real and imaginary parts have reverse tendency, namely, the real part increases and the imaginary decreases with the increasing frequency, meanwhile, ε'' shows a resonance peak around 7 GHz. The dielectric relaxation may come from the higher conductivity and special morphology of the $\text{Fe}_{0.14}(\text{CoNi})_{0.86}$ sample. Compared with iron-rich samples, the real and imaginary parts of complex permittivity for the $\text{Fe}_{0.14}(\text{CoNi})_{0.86}$ sample have larger values and fluctuation, which indicate larger dielectric loss.

Figure 2(b) presents the real part (μ') and imaginary part (μ'') of complex permeability. The real part μ' shows significant broad resonance feature. The resonance peak of $\text{Fe}_{0.14}(\text{CoNi})_{0.86}$ sample locates around 2–8 GHz. For the $x = 0.20$, 0.25 samples, the resonance peak shifts to the higher frequency region of 5–11 GHz, and μ'' values of $x = 0.25$ sample are larger than that of the $x = 0.20$ sample. The resonance peaks should arise from natural resonances. The iron-rich sample has enhanced natural resonance frequency. According to the natural resonance equation,

$$2\pi f_r = \gamma H_a, \quad H_a = 4|K_{\text{eff}}|/3\mu_0M_s,$$

$$K_{\text{eff}} = K_v' + 6K_s'/d,$$

where f_r is the resonance frequency, γ the gyromagnetic ratio, H_a the surface anisotropic field, K_{eff} the effective anisotropic coefficient, K_v' and K_s' the volume and surface anisotropy energy constants, and d the diameter of nanoparticles. It can be seen that the smaller d and larger K_v' and K_s' will result in

FIG. 1. (Color online) XRD patterns of $\text{Fe}_x(\text{CoNi})_{1-x}$ (x = 0.14, 0.20, 0.25) ternary alloy nanoparticles.

FIG. 2. (Color online) Frequency dependence of complex permittivity (a) and permeability (b) of the $\text{Fe}_x(\text{CoNi})_{1-x}$–paraffin composites.
the enhancement of \(f_r \). In addition, the surface anisotropy \(K_s \) in ferromagnetic nanoparticles originates from broken symmetry at the surface and becomes the main contributor to the effective anisotropy constant \(K_{\text{eff}} \). The iron-rich samples with smaller particle and grain size have larger \(f_r \).

The reflection loss (RL) of the Fe\(_x\)(CoNi)\(_{1-x}\)-paraffin matrix composites was calculated using transmission line theory.\(^{22,24}\) Figure 3 presents the calculated results of the RL values less than 20 dB. For the Fe\(_{0.20}\)(CoNi)\(_{0.80}\)-paraffin composites, RL values less than 20 dB were obtained in the 3.4–6.7 GHz range with absorber thickness of 2.4–4.2 mm. With the increase of Fe content, the wider frequency bands (RL < 20 dB) were achieved with thinner absorber thickness. For the Fe\(_{0.20}\)(CoNi)\(_{0.80}\)-paraffin composite, RL values less than 20 dB were observed in the 5.4–18 GHz range with a thin absorber thickness of 1.2–2.9 mm, and in that of the 6.7–18 GHz range with an absorber thickness of 1.4–2.9 mm for \(x = 0.25 \) sample. The effective absorption band locates at the C band (4–8 GHz) for the \(x = 0.14 \) sample, X band (8–12.4 GHz) and \(K_s \) band (12.4–18 GHz) for \(x = 0.20 \) and 0.25 samples. In addition, a maximal reflection loss (RL\(_{\text{max}}\)) of 58.9 dB was obtained at 7.1 GHz with thickness of 2.4 mm for the Fe\(_{0.20}\)(CoNi)\(_{0.80}\) sample and that of 59.0 dB at 9.5 GHz with thickness of 2.3 mm for the Fe\(_{0.25}\)(CoNi)\(_{0.75}\) sample. It is worth noting that another strong absorption peak with intensity of 56.1 dB was also observed at 16.9 GHz with a thin absorber thickness of 1.6 mm for the Fe\(_{0.25}\)(CoNi)\(_{0.75}\) sample. It can be seen that the values of RL\(_{\text{max}}\) are enhanced and the corresponding frequency shifts to higher frequency region with increasing Fe content. In this paper, RL\(_{\text{max}}\) is significantly higher than most of the reported ferromagnetic metal microparticles as filler systems.\(^{8-12}\) The significant influence of the filler type on the intensity and location of effective EMA band was investigated in this alloy nanoparticles system. In addition, the absorption band shifts to lower frequency range with the increase of absorber thickness; however, the absorption peak intensity does not decrease with that.

In conclusion, Fe\(_x\)(CoNi)\(_{1-x}\) (\(x = 0.14, 0.20, 0.25 \)) ternary alloy nanoparticles were prepared with the self-catalyzed reduction method. The electromagnetic parameters were adjusted by the changing of Fe content. With the increase of Fe content, the dielectric loss decreases and magnetic loss increases. Furthermore, a significant influence of Fe content on EMA properties was found. Both the location and intensity of the main absorption band can be adjusted remarkably with the variety of Fe content. The enhanced EMA properties mainly result from improved electromagnetic matching, strong natural resonance, as well as the dielectric relaxation.

FIG. 3. (Color online) Frequency dependence of RL for the Fe\(_x\)(CoNi)\(_{1-x}\)-paraffin composites of (a) Fe\(_{0.14}\)(CoNi)\(_{0.86}\), (b) Fe\(_{0.20}\)(CoNi)\(_{0.80}\) and (c) Fe\(_{0.25}\)(CoNi)\(_{0.75}\) ternary alloy nanoparticles.

15X. G. Liu et al., Carbon 47, 470 (2009).
16X. G. Liu et al., Carbon 48, 891 (2010).
22C. Kittel Phys. Rev. 73, 155 (1948).