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1 Abstract

In a broad sense, graph theory has always been present in civilization. Graph theory is the math of con-
nections − at a party, who knows each other? How many handshakes will each person in a meeting have to
give before shaking hands with everyone? What is the best way to route traffic through a city’s network of
roads?

Extremal graph theory is a branch that deals with counting items (called vertices) and connections
between two items (called edges) and determining the maximum/minimum number of characteristics needed
to satisfy a certain property.

The specific topic of this paper is Turán numbers, a topic of extremal graph theory that attempts to
determine the maximum number of edges a graph may have without a specified pattern emerging.

For two graphs, G and H, the Turán number is denoted ex(G,H), and is the maximum number of edges
in a subgraph of G that contains no copy of H.

We were able to find and prove a previously unknown Turán number for a certain pattern in a certain
graph. To be precise, we found the Turán number of copies of vertex-disjoint cliques in r-partite graphs
(part sizes n1, ..., nr). That is,

ex(Kn1,n2,...,nr
, kKr) =

∑
1≤i<j≤r

ninj − n1n2 + n2(k − 1)

This paper will describe the motivation and history of extremal graph theory, discuss definitions and concepts
related to the research that was done, go through the proof of our theorem, and finally discuss possible future
research as well as general open questions in the field. Note that much of this paper was adapted from a
previous paper by the author and other contributors [1].

2 Key concepts

The following glossary may serve as an introduction to those new to the field and as a reminder for those
more familiar with it. We encourage the reader to refer back to this section as a reference to both concepts
and notation.

Graph: A graph G is a pair of sets G = (V,E), where V is a fixed set of vertices, and the edge set E is
a set of pairs of distinct elements from V . We often write V as V (G) and E as E(G) (Note: all graphs used
in this paper have this definition; that is, they are simple and undirected).

An example of a graph. The nodes represent vertices and the lines represent edges.
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Subgraph: Let G be a graph. A subgraph H of G is a pair of sets H = (V ′, E′) where V ′ ⊆ V and
E′ ⊆ E, which is itself a graph. If H is a subgraph of G, we write H ⊆ G.

Cycle: A graph G is called a cycle if the graph is an alternating sequence of vertices and edges G =
v1e1v2e2...vn−1en−1vnenvn+1, where
ei = vivi+1, and if i < j ≤ n then vi 6= vj , and vn+1 = v1. A cycle of length n is typically denoted Cn.

C5

Complete graph: A graph G = (V,E) is complete if for every pair x 6= y in V we have xy ∈ E. If
|E(G)| = n, this graph is denoted Kn. A subgraph that is a complete graph is called a clique of size n.

K5, or clique of size 5

r-Partite graph: A graph G is r-partite if V (G) can be partitioned into r sets, V1 ∪ V2 ∪ · · · ∪ Vr such
that if x and y are both in the same Vi, then xy /∈ E(G).

A 3-partite (commonly called tripartite) graph. Here, each color indicates to which part a vertex might
belong.

Complete r-partite graph: A graph G that is r-partite is called complete r-partite if every pair of
vertices among different vertex sets in the partition (commonly called parts) are adjacent (connected by an
edge). If |Vi| = mi, then this graph is denoted Km1,m2,...,mr .

A complete bipartite graph, K3,2

Join: The join of two disjoint graphs G and H occurs when all vertieces in G are connected to all vertices
in H. The join of G and H is notated G+H.

Weight: For the purposes of this paper, we define the weight of a set of verticies as the number of edges
in the subgraph containing exactly these vertecies. For a set of vertices S, the weight of S is denoted as w(S).
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Turán number: The Turán number of a pair of graphs S and G with S ⊆ G is the maximum number
of edges that a subgraph of G may have and still contain no copy of S. This number may also be called the
extremal number, and is denoted ex(G,S).

Induced Subgraph: A vertex induced subgraph is a graph consisting of a specified set of vertices along
with any edges between these specific vertices. The graph induced by the vertex set S on a graph G is
denoted G[S].

3 Motivation and history

The study of graph theory is a fairly recent development, at least in the ways it is defined and researched
today. Arguably the first embryonic instance of a graph theory question was posed in 1736, when the Swiss
mathematician Leonard Euler published a paper called “The Seven Bridges of Königsberg.” In this paper,
Euler proved it was not possible to walk through Königsberg crossing each of the city’s seven bridges only
once. Euler noticed that as the traveler went from one bridge to another, the choice of roads between the
bridges was irrelevant. With our modern terminology, this is like saying we do not need to pay attention to
the shape of an edge between two verticies - all we need to know is that it connects them.

Nearly two centuries later, we finally have our first major extremal problem result made by Mantel in
1907 [2]. He found that if a graph with n verticies (denoted Gn) does not contain a clique of size 3 (denoted
K3) then the number of edges in Gn is no greater than n2/2, or

e(Gn) ≤
[
n2

4

]
This result is much more in line with the type of thinking we see today in graph theory. However, Mantel’s
result was largely forgotten. It wasn’t until years later that graph theory was again picked up, this time by
a man named Paul Erdős.

Erdős is considered by many to be one of the fathers of the field. His influence is far reaching - his work
influences graph theorists today in how to think about questions, and even what type of questions to ask.

One of Erdős’ well known theorems (published in 1938 and colloquially called the C4-Theorem) is a good
example of how graph theory uses techniques and has applications outside of pure graph theory alone. Part
of the theorem states:

1. Assume that n1 < · · · < nk are positive integers such that ninj 6= nhnl unless i = h and j = l or i = l
and j = h. What is the maximum number of such integers in [1, n]? Denote this maximum by B(n).

In a later a paper, Erdős would find the upper bound

B(n) ≤ π(n) +O

(
n3/4

log3/2n

)
where π(n) is the number of primes in [2, n] Note that the last term on the right side represents an error of

order n3/4

log3/2n
; in other words, this bound may deviate from reality by at most some factor of n3/4

log3/2n
.

At first reading, this question seems to lie purely in the realm of number theory. However, Erdős was able
to transform the question into a graph theory one by the following lemma:

Lemma 1. Every integer a ∈ [1, n] can be written as

a = bd : b ∈ B, d ∈ D

where D is the set of integers in [1, n2/3], IP is the set of primes in (n2/3, n] and B = D ∪ IP .
If we let A be a set that satisfies the condition in 1. Then we can represent every a ∈ A as ai = bj(i)dj(i).
We assume that bj > dj . If we create a bipartite graph G(B,D) by joining bj to dj for each bjdj = a ∈ A.
In a graph theoretical sense then, each aj is an edge between its associated vertices. Note that if we were to
find a 4-cycle (b1d1b2d2) in G(B,D), then a1 = b1d1 and a2 = b1d2, a3 = b2d2 and a4 = b2d1 meaning that
a1a3 = a2a4, which contradicts our assumption. Therefore, the reframed question becomes
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2. Given a bipartite graph G(X,Y ) with m and n vertices in its color classes, what is the maximum
number of edges G(X,Y ) may have without containing any C4?

Erdős proved the following theorem:

Theorem 1. If C4 ∈ G(X,Y ), |X| = |Y | = k, then

e(G(X,Y )) ≤ 3k3/2

In yet another borrowing from a different field, Erdős turned to geometry, borrowing a lemma from
another mathematician, Eszter Klein:

Lemma 2. Given p(p + 1) + 1 elements, (for some prime p) we can construct p(p + 1) + 1 combinations,
taken (p+ 1) at a time (meaning (p+ 1)-tuples) having no two elements in common.

Although we have glossed over the details of the proof, the example of Erdős’ C4-Theorem demonstrates
how graph theory has connections to other fields (here, we see connections to number theory and finite
geometry).

We see the concepts of graph theory being applied to a multitude of other fields, such as arithmetic
problems (for example in Sidon numbers [4]), topology (in places such as the Erdős−Stone Theorem [5]),
and computer science (Kuratowski’s work in networking [6]).

Our theorem deals with Turán numbers, which first appears to be a bit more abstract.
Paul Turán, like Erdős, was a Hungarian mathematician interested in graph theory. He was also highly

influential, especially in extremal problems, or problems that seek to find a maximum or minimum number
of something (such as edges, colorings, etc.) within a certain constraint. Erdős is even quoted as saying,
”Turán initiated the field of extremal graph theory.” [7]

Turán’s most famous theorem is about the number of edges a graph of n vertices may have without
containing a clique of size p. Below, we use the notation Tn,p−1, which is a Turán graph on n vertices with
p− 1 classes (meaning that it has the maximum possible number of edges without containing a clique of size
p).

Theorem 2. If Gn contains no Kp, then e(Gn) ≤ e(Tn,p−1). In case of equality, Gn = Tn,p−1.

While this theorem is for quite specific graphs, it opened the door to more general questions about host
graphs not containing specific subgraphs.

Our theorem is a descendant of this idea. Like Turán, we have chosen a specific host graph (an r-partite
graph with part sizes n1, . . . , nr) and a specific ’forbidden’ subgraph (k vertex-disjoint copies of Kr).

Two previous papers should be mentioned which may serve as helpful predecessors to our theorem.
Moon’s theorem [8] also has a forbidden graph of a number of vertex disjoint copies of a specific form.
In 2009, Chen, Li, and Tu [9] found the extremal number for k vertex disjoint matchings in bipartite

graphs - our theorem extends these results.

4 Theorem

Theorem 3. (Main Theorem) For any integers 1 ≤ k ≤ n1 ≤ · · · ≤ nr,

ex(Kn1,n2,...,nr , kKr) =
∑

1≤i<j≤r

ninj − n1n2 + n2(k − 1).

The approach to the proof will fall into two main sections. First, we will show the lower bound, or that
indeed, the extremal number is at least the number we claim. Then we will show the upper bound, or that
the extremal number is at most the number we claim. By showing the extremal number is simultaneously
at least and at most the value we claim, we will be able to then say that the extremal number is exactly
equal to the value we claim.

For the lower bound, we consider the graph ((n1 − (k − 1))K1 ∪Kk−1, n2
) + Kn3,...,nr

. In other words,
we have (n1 − (k − 1)) copies of K1 (i.e., (n1 − (k − 1) isolated vertices) and the complete bipartite graph
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between parts of size n2 and k−1. To this, we join the complete r-partite graph between the parts of size n3
through nr. Clearly, this is a subgraph of Kn1,...nr . Also note it has the required number of edges. Finally,
note that to have kKr, we would clearly need k vertices from each part involved in the kKr. However, in
our graph, we only have n1 − (k − 1) vertices contributing from the part of size n1, and can therefore not
have kKr. Therefore, since our graph is a subgraph of Kn1,...nr

, has the required number of edges, but still
does not contain a copy of kKr, it serves as a proof of the lower bound.

The upper bound will be a bit more of an in-depth process. We consider two cases: n2 = nr and n2 < nr.
In the former case, the proof is by induction on n1 + k. In the latter case, the proof is by induction on the
total number of vertices in the host graph.

For ease of notation, we define

hk(n1, n2, ..., nr) =
∑

1≤i<j≤r

ninj − n1n2 + n2(k − 1).

We begin with the case where n2 = nr. In order to use induction, we need two base cases, which are estab-
lished in Lemmas 3 and 4.

Given two disjoint subsets of the vertex set, A, B ∈ V (G), define AB as the graph formed by the set of
edges in G incident to (connected to) a vertex in A and a vertex in B.

Also for ease of notation, given an r-partite graph G with parts V1, ..., Vr, we let R(G, r) = {{v1, ..., vr} ∈
V (G) : vi ∈ Vi for all i ∈ [r]}. That is, R(G, r) is the set of all r-tuples of vertices with exactly one vertex
from each part. We will utilize R(G, r) throughout to facilitate the counting of edges. For some S ∈ R(G, r),
define w(S) as the number of edges in the subgraph of G induced by S, that is

w(S) = |E(G[S]|.

Note that for S ∈ R(G, r), an edge vivj ∈ ViVj is counted in w(S) if and only if {vi, vj} ⊆ S. Therefore,
summing over all S ∈ R(G, r), ∑

S∈R(G,r)

w(S) =
∑

i≤i<j≤r

|E(ViVj)|
∏
l 6=i,j

nl . (1)

Lemma 3. For 1 ≤ n1 ≤ n2,

ex(Kn1,n2,...,n2 ,Kr) = h1(n1, n2, ..., n2)

(Note that the following lemma establishes the base case for the induction on k, since we are looking for
a single Kr).

Proof. Suppose G ⊆ Kn1,n2,...,n2
does not contain a copy of Kr. Then, for all S ∈ R(G, r), we would have

w(S) ≤
(
r
2

)
− 1 (Notice that this is because

(
r
2

)
is the minimum weight of a Kr, so the weight must be at

least one fewer to guarantee no Kr). This means that for the sum over all S ∈ R(G, r), we would have∑
S∈R(G,r)

w(S) <

((
r

2

)
− 1

)
n1n

r−1
2 . (2)
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Subtracting (2) from (1) yields

0 ≥
r∑

j=2

|E(V1Vj)|nr−22 +
∑
i,j 6=1

|E(ViVj)|n1nr−32 −
((

r

2

)
− 1

)
n1n

r−1
2

= n1n2r
r−3|E(G)|+

r∑
j=2

|E(V1Vj)|nr−32 (n2 − n1)−
((

r

2

)
− 1

)
n1n

r−1
2

≥ n1nr−32 |E(G)|+
(
E|(G)| −

(
r − 1

2

)
n22

)
nr−32 (n2 − n1)−

((
r

2

)
− 1

)
n1n

r−1
2

= nr−22 |E(G)| −
(
r − 1

2

)
nr−12 (n2 − n1)−

((
r

2

)
− 1

)
n1n

r−1
2

= nr−22 |E(G)| − (r − 2)n1n
r−1
2 −

((
r

2

)
− 1

)
n1n

r−1
2 .

Therefore,

|E(G)| ≤ n1n2(r − 1) +

(
r − 1

2

)
n22 − n1n2 = h1(n1, n2, ..., n2).

We have shown that, although G does not contain a single Kr (as it was defined), the number of edges in G
is less than or equal to our theorized extremal number, meaning that the maximum number of edges G may
have is our theorized extremal number. Since the maximum number of edges a graph may have without any
appearance of a particular subgraph, this shows that ex(Kn1,n2,...,n2

,Kr) = h1(n1, n2, ..., n2), as desired.

Now we will establish the second base case, where we are looking for the same number of Kr’s as n1. As
in the Lemma 3, we have all equal part sizes, except for n1, which may be smaller.

Lemma 4. For 1 ≤ n1 ≤ n2,

ex(Kn1,n2,...,n2
, n1K2 = hn1

(n1, n2, ..., n2).

Proof. This lemma will be proved by induction on n1. The base case of n1 = 1 was shown for all positive
integers n2 by the Lemma 3. Assume the statement is true for n′1 < n1 where n1 ≥ 2. Now suppose towards
a contradiction that G ⊆ Kn1,n2,...,n2 contains more than hn1(n1, n2, ..., n2) edges but does not contain a
copy of n1Kr. Also note that simply by the way they are defined, hn1(n1, n2, ..., n2) is greater than or equal
to h1(n1, n2, ..., n2) (the inequality is not strict here because the lemma was defined for 1 ≤ n1 ≤ n2, i.e.,
not with strict inequalities). Symbolically, this is expressed as

|E(G)| > hn1
(n1, n2, ..., n2) ≤ h1(n1, n2, ..., n2)

Since there are more edges in G than the number of edges we have already established contains a Kr, we
know that G contains a copy of Kr.

Now let S ∈ R(G, r) such that G[S] ∼= Kr (i.e., the subgraph of G induced by S is Kr). Then, if we
examine the graph made by removing S from G, we see

|E(G\S)| ≤ hn1−1(n1 − 1, n2 − 1, ..., n2 − 1),

otherwise G\S would contain a copy of (n1 − 1)Kr, and this together with S is a copy of n1Kr in G (which
we are assuming cannot happen). Therefore,

|E(G)| − |E(G\S)| > hn1
(n1, n2, ..., n2)− hn1−1(n1 − 1, n2 − 1, ..., n2 − 1)

= (r − 1)(n1 + (r − 2)n2) + (r − 1)n2 −
(
r

2

)
− 1.

Another way of thinking about the above value is the number of edges in Kn1,n2,...,n2
that have a vertex in

S. This implies that all edges in the host graph containing a vertex in S are present in G. Note that this is
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true for every S such that G[S] = Kr in G.

Let ui ∈ Vi and uj ∈ VJ with i 6= j, if either ui or uj is in S, then the edge uiuj ∈ E(G). Otherwise,
for vi ∈ S ∩ Vi, let S′ = (X\{vi}) ∪ {ui}. S′ induces a copy of Kr in G and therefore uiuj ∈ E(G). Hence
G ∼= Kn1,n2,...,n2

, and thus contains n1Kr, a contradiction.

Now that we have our two necessary base cases, we are ready to prove the main theorem. The proof is
split up into two cases: n2 = nr and n2 < · · · < nr.

Proof. Case 1. Assuming n1 = nr, we proceed by induction on n1 + k. The base case of k = 1 was shown to
be true for all positive integers n1 in Lemma 3. Now assume the statement is true for the parameters n′1, k

′

such that n′1+k′ < n1+k for n1 > k ≥ 2. Also assume that G ⊆ Kn1,n2,...,n2 does not contain a copy of kKr.

First we will obtain a lower bound on the number of copies of Kr in G. Note that we are not requiring
the copies of Kr to be vertex disjoint. Suppose that there are exactly q such copies of Kr in G, then∑

S∈R(G,R)

w(S) ≤ q
(
r

2

)
+ (n1n

r−1
2 − q)

((
r

2

)
− 1

)
.

Recall that ∑
S∈R(G,R)

w(S) =

r∑
j=2

|E(V1Vj)|nr−22 +
∑
i,j 6=1

|E(ViVj)|n1nr−32 .

(this is just a rewording of equation (1), made specific to our G where n2 = nr). Again using the same q as
before, this gives

q ≥
r∑

j=2

|E(V1Vj)|nr−22 +
∑
i,j 6=1

|E(ViVj)|n1nr−32 − n1nr−12

((
r

2

)
− 1

)
. (3)

We will use equation (3) to get an upper bound on |E(G)| by counting
∑

S∈R(G,r)

|E(G\S)|. An edge vivj ∈ ViVj

is counted in |E(G\S)| if and only if vi 6∈ S and vj 6∈ S, hence∑
S∈R(G,r)

|E(G\S)| =
r∑

j=2

|E(V1Vj)|(n1 − 1)(n2 − 1)nr−22 +
∑
i,j 6=1

|E(ViVj)|(n2 − 1)2n1n
r−3
2 . (4)

Using equations (3) and (4), we now have∑
S∈R(G,r)

|E(G\S)|+ (q + n1n
r−1
2

((
r

2

)
− 1

)
(n2)− 1 ≥

r∑
j=2

|E(V1Vj)|(n1 − 1)(n2 − 1)nr−22

+
∑
i,j 6=1

|E(ViVj)|(n2 − 1)2n1n
r−3
2

−|E(G)|(n2 − 1)nr−22 n1. (5)

Now for S ∈ R(G, r), suppose G[S] is a copy of Kr. Then |E(G\S)| ≤ hk−1(n2 − 1, n2 − 1, ..., n2 − 1),
else by induction G\S contains a copy of (k − 1)Kr, and so this together with S yields a copy of kKr in
G. If G[S] is not complete, then since G\S does not contain a copy of kKr, induction gives |E(G\S)| ≤
hk(n1 − 1, n2 − 1, ..., n2 − 1). Hence∑

S∈R(G,r)

|E(G\S)| ≤ q (hk−1(n2 − 1, n2 − 1, ..., n2 − 1))

+ (n1n
r−1
2 − q) (hk(n2 − 1, n2 − 1, ..., n2 − 1))

= q(1− n2) + n1n
r−1
2 (hk(n2 − 1, n2 − 1, ..., n2 − 1))
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and thus, using equation (5) we have

|E(G)|(n2 − 1)nr−22 n1 ≤ n1nr−12

(
hk(n2 − 1, n2 − 1, ..., n2 − 1) +

((
r

2

)
− 1

)
(n2 − 1)

)
.

Therefore

|E(G)| ≤ n2
n2 − 1

(
hk(n2 − 1, n2 − 1, ..., n2 − 1) +

((
r

2

)
− 1

)
(n2 − 1)

)
= hk(n1, n2, ..., n2).

Case 2. Assume n2 < nr. We proceed by induction on the number of total vertices. The base case of n1 = nr
is true for all positive integers k by case 1. Now assume the statement holds for all parameters n′1, ..., n

′
r

such that
∑r

i=1 n
′
i <

∑r
i=1 ni. Suppose that G ⊆ Kn1,...,nr

does not contain a copy of kKr. Let vr ∈ Vr.
The graph G\{vr} does not contain a copy of kKr, has fewer vertices than G, and n2 ≤ nr − 1. Therefore,

|E(G)| = |E(G\{vr})|+ d(vr)

=≤ ex(Kn1,...,nr−1, kKr) + d(vr)

= hk(n1, ...nr − 1) + d(vr)

=
∑

1≤i<j≤r

ninj −
r−1∑
i=1

ni − n1n2 + n)2(k − 1+d(vr)

≤
∑

1≤i<j≤r

ninj − n1n2 + n2(k − 1)

= hk(n1, n2, ..., nr).

5 Future research and other open questions

The main theorem relies on the fact that both Kr and Kn1,n2,...,nr
are r-partite. Certainly the host graph

must have more parts than the size of the forbidden clique - in other words, it must be l-partite for l ≥ r to
have Kr as a subgraph. An interesting generalization would be to calculate ex(Kn1,n2,...,nl

, kKr) for r < .
In [10], De Silva, Heysse, and Young proved that

ex(Kn1,n2,...,nl
, kK2) = (k − 1)

( t∑
i=2

ni

)
,

however the Turán number is open for r ≥ 3. The graph

((n1 + n2k + 1)K1 ∪Kk1,n3
) + n4K1

does not contain kK3, hence

ex(Kn1,n2,n3,n4
, kK3) ≥ (n1 + n2 + n3)n4 + (k − 1)n3

This construction can be easily generalized to r-partite graphs, but it is not clear that this is an extremal
construction.
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