Some inequalities for the Khatri-Rao product of matrices

Chong-Guang Cao

Xian Zhang
x.zhang@qub.ac.uk

Zhong-Peng Yang

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1090

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
SOME INEQUALITIES FOR THE KHATRI-RAO PRODUCT OF MATRICES

CHONG-GUANG CAO†, XIAN ZHANG†‡, AND ZHONG-PENG YANG§

Abstract. Several inequalities for the Khatri-Rao product of complex positive definite Hermitian matrices are established, and these results generalize some known inequalities for the Hadamard and Khatri-Rao products of matrices.

Key words. Matrix inequalities, Hadamard product, Khatri-Rao product, Tracy-Singh product, Spectral decomposition, Complex positive definite Hermitian matrix.

AMS subject classifications. 15A45, 15A69

1. Introduction. Consider complex matrices $A = (a_{ij})$ and $C = (c_{ij})$ of order $m \times n$ and $B = (b_{ij})$ of order $p \times q$. Let A and B be partitioned as $A = (A_{ij})$ and $B = (B_{ij})$, where A_{ij} is an $m_i \times n_j$ matrix and B_{kl} is a $p_k \times q_l$ matrix ($\sum m_i = m$, $\sum n_j = n$, $\sum p_k = p$, $\sum q_l = q$). Let $A \otimes B$, $A \circ C$, $A \odot B$ and $A \ast B$ be the Kronecker, Hadamard, Tracy-Singh and Khatri-Rao products, respectively. The definitions of the mentioned four matrix products are given by Liu in [1]. Additionally, Liu [1, p. 269] also shows that the Khatri-Rao product can be viewed as a generalized Hadamard product and the Kronecker product is a special case of the Khatri-Rao or Tracy-Singh products. The purpose of this present paper is to establish several inequalities for the Khatri-Rao product of complex positive definite matrices, and thereby generalize some inequalities involving the Hadamard and Khatri-Rao products of matrices in [1, Eq. (13) and Theorem 8], [6, Eq. (3), Lemmas 2.1 and 2.2, Theorems 3.1 and 3.2], and [3, Eqs. (2) and (9)].

Let $S(m)$ be the set of all complex Hermitian matrices of order m, and $S^+(m)$ the set of all complex positive definite Hermitian matrices of order m. For M and N in $S(m)$, we write $M \geq N$ in the Löwner ordering sense, i.e., $M - N$ is positive semidefinite. For a matrix $A \in S^+(m)$, we denote by $\lambda_1(A)$ and $\lambda_m(A)$ the largest and smallest eigenvalue of A, respectively. Let B^* be the conjugate transpose matrix of the complex matrix B. We denote the $n \times n$ identity matrix by I_n, also we write I when the order of the matrix is clear.

2. Some Lemmas. In this section, we give some preliminaries.

Received by the editors on 27 June 2000. Final version accepted for publication on 5 September 2002. Handling editor: Daniel Hershkowitz.

†Department of Mathematics, Heilongjiang University, Harbin, 150080, P. R. of China (caochongguang@163.com). Partially supported by the Natural Science Foundation of China, the Natural Science Foundation of Heilongjiang province under grant No. A01-07, and the N. S. F. of Heilongjiang Education Committee under grant No. 15011014.

‡School of Mechanical and Manufacturing Engineering, The Queen’s University of Belfast, Ashby Building, Stranmillis Road, Belfast, BT9 5AH, Northern Ireland, UK (x.zhang@qub.ac.uk).

§Department of Mathematics, Putian College, Putian, Fujian, 351100, P. R. of China (yangzhongpeng@sina.com). Partially supported by NSF of Fujian Education Committee.
Lemma 2.1. There exists an \(mp \times \sum m_i p_i\) real matrix \(Z\) such that \(Z^T Z = I\) and
\[
(2.1) \quad A \ast B = Z^T (A \odot B) Z
\]
for any \(A \in S(m)\) and \(B \in S(p)\) partitioned as follows:
\[
A = \begin{bmatrix}
A_{11} & \cdots & A_{1t} \\
\vdots & \ddots & \vdots \\
A_{11} & \cdots & A_{tt}
\end{bmatrix}, \quad B = \begin{bmatrix}
B_{11} & \cdots & B_{1t} \\
\vdots & \ddots & \vdots \\
B_{t1} & \cdots & B_{tt}
\end{bmatrix},
\]
where \(A_{ii} \in S(m_i)\) and \(B_{ii} \in S(p_i)\) for \(i = 1, 2, \ldots, t\).

Proof. Let
\[
Z_i = \begin{bmatrix}
O_{i1} & \cdots & O_{i, i-1} & I_{m_i p_i} & O_{i, i+1} & \cdots & O_{it}
\end{bmatrix}^T, \quad i = 1, 2, \ldots, t,
\]
where \(O_{ik}\) is the \(m_i p_k \times m_i p_i\) zero matrix for any \(k \neq i\). Then \(Z_i^T Z_i = I\) and
\[
Z_i^T (A_{ij} \odot B) Z_j = Z_i^T (A_{ij} \odot B_{ii}) Z_j = A_{ij} \odot B_{ij}, \quad i, j = 1, 2, \ldots, t.
\]

Letting \(Z = \begin{bmatrix} Z_1 & \cdots & Z_t \end{bmatrix}\), the lemma follows by a direct computation. \(\square\)

If \(t = 2\) in Lemma 2.1, then Eq. (2.1) becomes Eq. (13) of [1].

Corollary 2.2. There exists a real matrix \(Z\) such that \(Z^T Z = I\) and
\[
(2.2) \quad M_1 \ast \cdots \ast M_k = Z^T (M_1 \odot \cdots \odot M_k) Z
\]
for any \(M_i \in S(m(i))\) \((1 \leq i \leq k, \ k \geq 2)\) partitioned as
\[
(2.3) \quad M_i = \begin{bmatrix}
N_{11}^{(i)} & \cdots & N_{1t}^{(i)} \\
\vdots & \ddots & \vdots \\
N_{t1}^{(i)} & \cdots & N_{tt}^{(i)}
\end{bmatrix},
\]
where \(N_{ij}^{(i)} \in S(m(i)_j)\) for any \(1 \leq i \leq k\) and \(1 \leq j \leq t\).

Proof. We proceed by induction on \(k\). If \(k = 2\), the corollary is true by Lemma 2.1. Suppose the corollary is true when \(k = s\), i.e., there exists a real matrix \(P\) such that \(P^T P = I\) and \(M_1 \ast \cdots \ast M_s = P^T (M_1 \odot \cdots \odot M_s) P\), we will prove that it is true when \(k = s + 1\). In fact,
\[
M_1 \ast \cdots \ast M_{s+1} =
\]
\[
= (M_1 \ast \cdots \ast M_s) * M_{s+1}
\]
\[
= P^T (M_1 \odot \cdots \odot M_s) P * M_{s+1}
\]
\[
= Q^T [P^T (M_1 \odot \cdots \odot M_s) P \odot M_{s+1}] Q \quad (Q^T Q = I)
\]
\[
= Q^T [P^T (M_1 \odot \cdots \odot M_s) P \odot (I_{m(s+1)} M_{s+1} I_{m(s+1)})] Q
\]
\[
= Q^T (P^T \odot I_{m(s+1)}) [(M_1 \odot \cdots \odot M_s) \odot M_{s+1}] (P \odot I_{m(s+1)}) Q.
\]
Letting $Z = (P \odot I_{m(s+1)}) Q$, the corollary follows. □

If the Khatri-Rao and Tracy-Singh products are replaced by the the Hadamard and Kronecker products in Corollary 2.2, respectively, then (2.2) becomes Lemma 2.2 in [6].

Lemma 2.3. Let A and B be compatibly partitioned matrices, then $(A \odot B)^* = A^* \odot B^*$.

Proof.

\[
(A \odot B)^* = \left((A_{ij} \odot B_{kl})_{ij} \right)^* = \left((A_{ij} \odot B_{kl})^* \right)_{ji} = \left((A^*_i \odot B^*_k)_{ik} \right)_{ji} = (A^*_i \odot B^*_k)_{ji} = A^* \odot B^*. \]

Definition 2.4. Let the spectral decomposition of $A \in S^+(m)$ be

\[
A = U_A^* D_A U_A = U_A^* \text{diag}(d_1, \ldots, d_m) U_A,
\]

where $d_i > 0$ for all i. For any $c \in \mathbb{R}$, we define the power of matrix A as follows

\[
A^c = U_A^* D_A^c U_A = U_A^* \text{diag}(d_1^c, \ldots, d_m^c) U_A.
\]

Lemma 2.5. Let $A \in S^+(m), B \in S^+(p)$ and $c \in \mathbb{R}$, then

i) $A \odot B \in S^+(mp)$, $\lambda_i(A \odot B) = \lambda_1(A) \lambda_i(B)$, and $\lambda_{mp}(A \odot B) = \lambda_m(A) \lambda_p(B)$;

ii) $(A \odot B)^c = A^c \odot B^c$.

Proof. Let $A = U_A^* D_A U_A$ and $B = U_B^* D_B U_B$ be the spectral decompositions of A and B, respectively. From Lemma 2.3 and [1, Theorem 1(a)], we derive

\[
(2.4)[U_A \odot U_B]^*(U_A \odot U_B) = (U_A^* \odot U_B^*)(U_A \odot U_B) = (U_A^* U_A) \odot (U_B^* U_B) = I_{mp}
\]

\[
(2.5) A \odot B = (U_A^* D_A U_A) \odot (U_B^* D_B U_B) = (U_A^* U_A^*)(D_A \odot D_B)(U_A \odot U_B) = (U_A \odot U_B)(D_A \odot D_B)(U_A \odot U_B).
\]

The lemma follows from (2.4), (2.5), and the definitions of $A \odot B$ and $(A \odot B)^c$. □

If the Tracy-Singh product is placed by the Kronecker product in Lemma 2.5, then ii) of Lemma 2.5 becomes Lemma 2.1 in [6].

Corollary 2.6. Let $M_i \in S^+(m(i))$ for $i = 1, 2, \ldots, k$, $n = \prod_{i=1}^{k} m(i)$ and $c \in \mathbb{R}$, then

i) $M_1 \odot \cdots \odot M_k \in S^+(n)$, $\lambda_1(M_1 \odot \cdots \odot M_k) = \lambda_1(M_1) \cdots \lambda_1(M_k)$ and

$\lambda_n(M_1 \odot \cdots \odot M_k) = \lambda_{m(i)}(M_i)$;

ii) $(M_1 \odot \cdots \odot M_k)^c = M_1^c \odot \cdots \odot M_k^c$.

Proof. Using Lemma 2.5, the corollary follows by induction. □

If the Tracy-Singh product is replaced by the Kronecker product in Corollary 2.6, then ii) of Corollary 2.6 becomes Eq. (3) in [6].

Lemma 2.7. [4], [5] Let $H \in S^+(n)$ and V be a complex matrix of order $n \times m$ such that $V^*V = I_m$, then
Some Inequalities for the Khatri-Rao Product of Matrices

279

i) \((V^*H^iV)^{1/r} \leq (V^*H^iV)^{1/s}\), where \(r\) and \(s\) are two real numbers such that \(s > r\), and either \(s \notin (-1, 1)\) and \(r \notin (-1, 1)\) or \(s \geq 1 \geq r \geq \frac{1}{2}\) or \(r \leq -1 \leq s \leq -\frac{1}{2}\);

ii) \((V^*H^iV)^{1/s} \leq \Delta(s, r)(V^*H^iV)^{1/r}\), where \(r\) and \(s\) are two real numbers such that \(s > r\) and either \(s \notin (-1, 1)\) or \(r \notin (-1, 1)\), \(\Delta(s, r) = \lambda_n(H)\), \(w = \lambda_n(H)\) and \(\delta = \frac{w}{\theta}\).

iii) \((V^*H^iV)^{1/s} - (V^*H^iV)^{1/r} \leq \Delta(s, r)I\), where \(\Delta(s, r) = \max_{\theta \in [0, 1]} \{[\theta W^s + (1 - \theta)w^s]^{1/s} - [\theta W^r + (1 - \theta)w^r]^{1/r}\}\), and \(r, s, W, w\) and \(\delta\) are as in ii).

3. Main results. In this section, we establish some inequalities for the Khatri-Rao product of matrices.

Theorem 3.1. Let \(M_i \in S^+(m(i))\) (1 \(\leq i \leq k\) be partitioned as in (2.3) and
\(n = \prod_{i=1}^k m(i)\), then

(i) \((M_i^* \cdots \cdots M_k^*)^{1/s} \geq (M_i^* \cdots \cdots M_k^*)^{1/r}\), where \(r\) and \(s\) are as in i) of Lemma 2.7;

(ii) \((M_i^* \cdots \cdots M_k^*)^{1/s} \leq \Delta(s, r)(M_i^* \cdots \cdots M_k^*)^{1/r}\), where \(W = \prod_{i=1}^k \lambda_1(M_i)\) and \(w = \prod_{i=1}^k \lambda_{m(i)}(M_i)\), and \(r, s, \delta\ and \Delta(s, r)\ are as in ii) of Lemma 2.7;

(iii) \((M_i^* \cdots \cdots M_k^*)^{1/s} - (M_i^* \cdots \cdots M_k^*)^{1/r} \leq \Delta(s, r)I\), where \(W = \prod_{i=1}^k \lambda_1(M_i)\) and \(w = \prod_{i=1}^k \lambda_{m(i)}(M_i)\), and \(r, s, \delta\ and \Delta(s, r)\ is as in iii) of Lemma 2.7.

Proof. Let \(H = M_1 \odot \cdots \odot M_k\), then \(H \in S^+(n)\), \(\lambda_1(H) = \prod_{i=1}^k \lambda_1(M_i)\) and \(\lambda_n(H) = \prod_{i=1}^k \lambda_{m(i)}(M_i)\) from i) of Corollary 2.6. Therefore, using ii) of Corollary 2.6, Corollary 2.2, and Lemma 2.7,

\[(M_i^* \cdots \cdots M_k^*)^{1/r} = (Z^T(M_i^* \cdots \cdots M_k^*)Z)^{1/r} = (Z^T(M_1 \odot \cdots \odot M_k)^rZ)^{1/r} \leq (Z^T(M_1 \odot \cdots \odot M_k)^sZ)^{1/s} = (Z^T(M_1^* \cdots \cdots M_k^*)Z)^{1/s} = (M_i^* \cdots \cdots M_k^*)^{1/s},\]

\[(M_i^* \cdots \cdots M_k^*)^{1/s} = (Z^T(M_i^* \cdots \cdots M_k^*)Z)^{1/s} = (Z^T(M_1 \odot \cdots \odot M_k)^sZ)^{1/s} \leq \Delta(s, r)(Z^T(M_1 \odot \cdots \odot M_k)^rZ)^{1/r} = \Delta(s, r)(Z^T(M_1^* \cdots \cdots M_k^*)Z)^{1/r} = \Delta(s, r)(M_i^* \cdots \cdots M_k^*)^{1/r},\]
The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

Chong-Guang Cao, Xian Zhang, and Zhong-Peng Yang

\[(M_1 \cdots M_k)^{1/s} - (M_1^T \cdots M_k^T)^{1/r} = \]
\[= (Z^T (M_1 \cdots M_k)^{1/s} - (Z^T (M_1 \cdots M_k)^T)^{1/r} \leq \Delta(s, r)I. \]

If the Khatri-Rao and Tracy-Singh products are replaced by the Hadamard and Kronecker products in Theorem 3.1, respectively, then (i) becomes Theorem 3.1 in [6], and (ii) and (iii) become Theorem 3.2 in [6].

Theorem 3.2. Let \(M_i \in S^+(m(i))\) \(1 \leq i \leq k\) be partitioned as in (2.3), then

\[(3.1) \quad (M_1 \cdots M_k)^{-1} \leq M_1^{-1} \cdots M_k^{-1},\]
\[(3.2) \quad M_1^{-1} \cdots M_k^{-1} \leq \frac{(W + w)^2}{4W^2}(M_1 \cdots M_k)^{-1},\]
\[(3.3) \quad M_1 \cdots M_k - (M_1^{-1} \cdots M_k^{-1})^{-1} \leq (\sqrt{W} - \sqrt{w})^2 I,\]
\[(3.4) \quad (M_1 \cdots M_k)^{-1} \leq M_1^2 \cdots M_k^2,\]
\[(3.5) \quad M_1 \cdots M_k \leq \frac{(W + w)^2}{4W^2}(M_1 \cdots M_k)^2,\]
\[(3.6) \quad (M_1 \cdots M_k)^2 - M_1^2 \cdots M_k^2 \leq \frac{1}{4}(W - w)^2 I,\]
\[(3.7) \quad M_1 \cdots M_k \leq (M_1^2 \cdots M_k^2)^{1/2},\]
\[(3.8) \quad (M_1^2 \cdots M_k^2)^{1/2} \leq \frac{W + w}{2\sqrt{W^2}}(M_1 \cdots M_k),\]
\[(3.9) \quad (M_1^2 \cdots M_k^2)^{1/2} - M_1 \cdots M_k \leq \frac{(W - w)^2}{4(W + w)} I,\]

where \(W\) and \(w\) are as in Theorem 3.1.

Proof. Noting that \(G \geq H > O\) if and only if \(H^{-1} \geq G^{-1} > O\) [2], we obtain (3.1), (3.2) and (3.3) by choosing \(r = -1\) and \(s = 1\) in Theorem 3.1. Similarly, (3.7), (3.8) and (3.9) can be obtained by choosing \(r = 1\) and \(s = 2\) in Theorem 1. Thereby, using that \(G \geq H > 0\) implies \(G^2 \geq H^2 > 0\), we derive that (3.4) and (3.5) hold.

Liu and Neudecker [3] show that

\[(3.10) \quad V^*A^2V - (V^*AV)^2 \leq \frac{1}{4}(\lambda_1(A) - \lambda_m(A))^2 I\]

for \(A \in S^+(m)\) and \(V^*V = I\). Replacing \(A\) by \(M_1 \cdots M_k\) and \(V\) by \(Z\) in (3.10), we obtain (3.6).

If we replace the Khatri-Rao product by the Hadamard product in (3.1), (3.2), (3.3), (3.4), (3.7), (3.8) and (3.9), then we obtain some inequalities in [6]. If choosing \(t = 2\) and considering the real positive definite matrices in Theorem 3.2, then Theorem 3.2 becomes Theorem 8 in [1]. If choosing \(t = 2\) and replacing the Khatri-Rao product by the Hadamard product in (3.6) and (3.8), respectively, then we obtain Eqs. (2) and (9) of [3].

Acknowledgement We wish to thank the referees for their helpful comments.
Some Inequalities for the Khatri-Rao Product of Matrices

REFERENCES

