2007

On the nullity of graphs

Bo Cheng
liubl@scnu.edu.cn

Bolian Liu

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1182

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
ON THE NULLITY OF GRAPHS

BO CHENG† AND BOLIAN LIU†

Abstract. The nullity of a graph $G$, denoted by $\eta(G)$, is the multiplicity of the eigenvalue zero in its spectrum. It is known that $\eta(G) \leq n - 2$ if $G$ is a simple graph on $n$ vertices and $G$ is not isomorphic to $nK_1$. In this paper, we characterize the extremal graphs attaining the upper bound $n - 2$ and the second upper bound $n - 3$. The maximum nullity of simple graphs with $n$ vertices and $e$ edges, $M(n,e)$, is also discussed. We obtain an upper bound of $M(n,e)$, and characterize $n$ and $e$ for which the upper bound is achieved.

Key words. Graph eigenvalue, Nullity, Clique, Girth, Diameter.

AMS subject classifications. 05C50.

1. Introduction. Let $G$ be a simple graph. The vertex set of $G$ is referred to as $V(G)$, the edge set of $G$ as $E(G)$. If $W$ is a nonempty subset of $V(G)$, then the subgraph of $G$ obtained by taking the vertices in $W$ and joining those pairs of vertices in $W$ which are joined in $G$ is called the subgraph of $G$ induced by $W$ and is denoted by $G[W]$. We write $G - \{v_1, \ldots, v_k\}$ for the graph obtained from $G$ by removing the vertices $v_1, \ldots, v_k$ and all edges incident to them.

We define the union of $G_1$ and $G_2$, denoted by $G_1 \cup G_2$, to be the graph with vertex-set $V(G_1) \cup V(G_2)$ and edge-set $E(G_1) \cup E(G_2)$. If $G_1$ and $G_2$ are disjoint we denote their union by $G_1 + G_2$. The disjoint union of $k$ copies of $G$ is often written $kG$. As usual, the complete graph and cycle of order $n$ are denoted by $K_n$ and $C_n$, respectively. An isolated vertex is sometimes denoted by $K_1$.

Let $r \geq 2$ be an integer. A graph $G$ is called $r$-partite if $V(G)$ admits a partition into $r$ classes $X_1, X_2, \ldots, X_r$ such that every edge has its ends in different classes; vertices in the same partition must not be adjacent. Such a partition $(X_1, X_2, \ldots, X_r)$ is called a $r$-partition of the graph. A complete $r$-partite graph is a simple $r$-partite graph with partition $(X_1, X_2, \ldots, X_r)$ in which each vertex of $X_i$ is joined to each vertex of $G - X_i$; if $|X_i| = n_i$, such a graph is denoted by $K_{n_1,n_2,\ldots,n_r}$. Instead of ‘2-partite’ (‘3-partite’) one usually says bipartite (tripartite).

Let $G$ and $G'$ be two graphs. Then $G$ and $G'$ are isomorphic if there exists a bijection $\varphi : V(G) \rightarrow V(G')$ with $xy \in E(G) \iff \varphi(x)\varphi(y) \in E(G')$ for all $x, y \in V(G)$.

The adjacency matrix $A(G)$ of graph $G$ of order $n$, having vertex-set $V(G) = \{v_1, v_2, \ldots, v_n\}$ is the $n \times n$ symmetric matrix $[a_{ij}]$, such that $a_{ij} = 1$ if $v_i$ and $v_j$ are adjacent and 0, otherwise. A graph is said to be singular (non-singular) if its
adjacency matrix is a singular (non-singular) matrix. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $A(G)$ are said to be the eigenvalues of the graph $G$, and to form the spectrum of this graph. The number of zero eigenvalues in the spectrum of the graph $G$ is called its nullity and is denoted by $\eta(G)$. Let $r(A(G))$ be the rank of $A(G)$, clearly, $\eta(G) = n - r(A(G))$. The rank of a graph $G$ is the rank of its adjacency matrix $A(G)$, denoted by $r(G)$. Then $\eta(G) = n - r(G)$. Each of $\eta(G)$ and $r(G)$ determines the other.

It is known that $0 \leq \eta(G) \leq n - 2$ if $G$ is a simple graph on $n$ vertices and $G$ is not isomorphic to $nK_1$. In [3], L.Collatz and U.Sinogowitz first posed the problem of characterizing all graphs $G$ with $\eta(G) > 0$. This question is of great interest in chemistry, because, as has been shown in [4], for a bipartite graph (corresponding to an alternant hydrocarbon), if $\eta(G) > 0$, then it indicates the molecule which such a graph represents is unstable. The problem has not yet been solved completely; only for trees and bipartite graph some particular results are known (see [4] and [5]). In recent years, this problem has been investigated by many researchers([5], [7] and [8]).

A natural question is how to characterize the extremal matrices attaining the upper bound $n - 2$ and the second upper bound $n - 3$. The following theorems answer this question.

**Theorem 1.1.** Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 2$. Then $\eta(G) = n - 2$ if and only if $G$ is isomorphic to $K_{n_1,n_2} + kK_1$, where $n_1 + n_2 + k = n$, $n_1, n_2 > 0$, and $k \geq 0$.

**Theorem 1.2.** Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 3$. Then $\eta(G) = n - 3$ if and only if $G$ is isomorphic to $K_{n_1,n_2,n_3} + kK_1$, where $n_1 + n_2 + n_3 + k = n$, $n_1, n_2, n_3 > 0$, and $k \geq 0$.

We now introduce the definition of maximum nullity number, which is closely related to the upper bound of $\eta(G)$. Let $\Gamma(n, e)$ be the set of all simple graphs with $n$ vertices and $e$ edges. The maximum nullity number of simple graphs with $n$ vertices and $e$ edges, $M(n, e)$, is $\max \{\eta(A) : A \in \Gamma(n, e)\}$, where $n \geq 1$ and $0 \leq e \leq \binom{n}{2}$.

This paper is organized as follows. Theorem 1.1 and Theorem 1.2 are proved in section 2. In order to prove them, we obtain some inequalities concerning $\eta(G)$ in section 2. In section 4, we obtain an upper bound of $M(n, e)$, and characterize $n$ and $e$ for which the upper bound is achieved.

2. Some inequalities concerning $\eta(G)$. A path is a graph $P$ of the form $V(P) = \{v_1, v_2, \ldots, v_k\}$ and $E(P) = \{v_1v_2, v_2v_3, \ldots, v_{k-1}v_k\}$, where the vertices $v_1, v_2, \ldots, v_k$ are all distinct. We say that $P$ is a path from $v_1$ to $v_k$, or a $(v_1, v_k)$-path. It can be denoted by $P_k$. The number of edges of the path is its length. The distance $d(x, y)$ in $G$ of two vertices $x, y$ is the length of a shortest $(x, y)$-path in $G$; if no such path exists, we define $d(x, y)$ to be infinite. The greatest distance between any two vertices in $G$ is the diameter of $G$, denoted by diam$(G)$. 
LEMMA 2.1. (see [6]) (i) The adjacency matrix of the complete graph $K_n$, $A(K_n)$, has 2 distinct eigenvalues $n - 1$, $-1$ with multiplicities $1$, $n - 1$ where $n > 1$.

(ii) The eigenvalues of $C_n$ are $\lambda_r = 2\cos\frac{2\pi r}{n}$, where $r = 0, \ldots, n - 1$.

(iii) The eigenvalues of $P_n$ are $\lambda_r = 2\cos\frac{2\pi r}{n+1}$, where $r = 1, 2, \ldots, n$.

LEMMA 2.2. (i) $r(K_n) = \begin{cases} 0 & \text{if } n = 1; \\ n & \text{if } n > 1. \end{cases}$

(ii) $r(C_n) = \begin{cases} n - 2, & \text{if } n \equiv 0(\text{mod}4); \\ n, & \text{otherwise}. \end{cases}$

(iii) $r(P_n) = \begin{cases} n - 1, & \text{if } n \text{ is odd}; \\ n, & \text{otherwise}. \end{cases}$

Proof. (i) and (iii) are direct consequences from Lemma 2.1.

(ii) We have $\lambda_r = 0$ if and only if $2\cos\frac{2\pi r}{n} = 0$ if and only if $\frac{2\pi r}{n} = \pi/2$ or $3\pi/2$. Therefore $\lambda_r = 0$ if and only if $r = n/4$ or $r = 3n/4$. Hence (ii) holds. □

The following result is straightforward.

LEMMA 2.3. (i) Let $H$ be an induced subgraph of $G$. Then $r(H) \leq r(G)$.

(ii) Let $G = G_1 + G_2$, then $r(G) = r(G_1) + r(G_2)$, i.e., $\eta(G) = \eta(G_1) + \eta(G_2)$.

In the remainder of this section, we give some inequalities concerning $\eta(G)$.

PROPOSITION 2.4. Let $G$ be a simple graph on $n$ vertices and $K_p$ be a subgraph of $G$, where $2 \leq p \leq n$. Then $\eta(G) \leq n - p$.

Proof. Immediate from Lemma 2.2(i) and Lemma 2.3(i). □

A clique of a simple graph $G$ is a subset $S$ of $V(G)$ such that $G[S]$ is complete. A clique $S$ is maximum if $G$ has no clique $S'$ with $|S'| > |S|$. The number of vertices in a maximum clique of $G$ is called the clique number of $G$ and is denoted by $\omega(G)$. The following inequality is clear from the above result.

COROLLARY 2.5. Let $G$ be a simple graph on $n$ vertices and $G$ is not isomorphic to $nK_1$. Then $\eta(G) + \omega(G) \leq n$.

PROPOSITION 2.6. Let $G$ be a simple graph on $n$ vertices and let $C_p$ be an induced subgraph of $G$, where $3 \leq p \leq n$. Then $\eta(G) \leq \begin{cases} n - p + 2, & \text{if } p \equiv 0(\text{mod}4); \\ n - p, & \text{otherwise}. \end{cases}$

Proof. This follows from Lemma 2.2(ii) and Lemma 2.3(i). □

The length of the shortest cycle in a graph $G$ is the girth of $G$, denoted by $gir(G)$. A relation between $gir(G)$ and $\eta(G)$ is given here.

COROLLARY 2.7. If $G$ is simple graph on $n$ vertices and $G$ has at least one cycle, then $\eta(G) \leq \begin{cases} n - gir(G) + 2, & \text{if } gir(G) \equiv 0(\text{mod}4); \\ n - gir(G), & \text{otherwise}. \end{cases}$
Proposition 2.8. Let \( G \) be a simple graph on \( n \) vertices and let \( P_k \) be an induced subgraph of \( G \), where \( 2 \leq k \leq n \). Then
\[
\eta(G) \leq \begin{cases} 
  n - k + 1, & \text{if } k \text{ is odd;} \\
  n - k, & \text{otherwise.} 
\end{cases}
\]

Proof. This is a direct consequence of Lemma 2.2(iii) and Lemma 2.3(i). \( \Box \)

Corollary 2.9. Suppose \( x \) and \( y \) are two vertices in \( G \) and there exists an \((x,y)\)-path in \( G \). Then
\[
\eta(G) \leq \begin{cases} 
  n - d(x,y), & \text{if } d(x,y) \text{ is even;} \\
  n - d(x,y) - 1, & \text{otherwise.} 
\end{cases}
\]

Proof. Let \( P_k \) be the shortest path between \( x \) and \( y \). Suppose \( v_1, v_2, \ldots, v_k \) are the vertices of \( P_k \). Then \( G[v_1, v_2, \ldots, v_k] \) is \( P_k \). From Proposition 2.8, we have
\[
\eta(G) \leq \begin{cases} 
  n - d(x,y), & \text{if } d(x,y) \text{ is even;} \\
  n - d(x,y) - 1, & \text{otherwise.} 
\end{cases}
\]

Corollary 2.10. Suppose \( G \) is a simple connected graph on \( n \) vertices. Then
\[
\eta(G) \leq \begin{cases} 
  n - \text{diam}(G), & \text{if } \text{diam}(G) \text{ is even;} \\
  n - \text{diam}(G) - 1, & \text{otherwise.} 
\end{cases}
\]

3. Extremal matrices and graphs. For any vertex \( x \in V(G) \), define \( \Gamma(x) = \{v : v \in V(G) \text{ and } v \text{ is adjacent to } x\} \). We first give the following lemma.

Lemma 3.1. Suppose that \( G \) is a simple graph on \( n \) vertices and \( G \) has no isolated vertex. Let \( x \) be an arbitrary vertex in \( G \). Let \( Y = \Gamma(x) \) and \( X = V(G) - Y \). If \( r(G) \leq 3 \), then
(i) No two vertices in \( X \) are adjacent.
(ii) Each vertex from \( X \) and each vertex from \( Y \) are adjacent.

Proof. (i) Suppose \( x_1 \in X \), \( x_2 \in X \), and \( x_1 \) and \( x_2 \) are adjacent. Since \( x_1 \in X \), \( x_1 \) and \( x \) are not adjacent. Similarly we have \( x_2 \) and \( x \) are not adjacent. Since \( G \) has no isolated vertex, \( x \) is not an isolated vertex. Then \( Y \) is not an empty set. Select any vertex \( y \) in \( Y \). Then \( G[x_1, x_2, y] \) is isomorphic to \( K_2 + K_1, K_{1,2} \) or \( K_3 \).

If \( G[x_1, x_2, y] \) is isomorphic to \( K_2 + K_1 \), then \( G[x, x_1, x_2, y] \) is isomorphic to \( P_2 + P_2 \). Since \( r(P_2 + P_2) = r(P_2) + r(P_2) = 2 + 2 = 4 \) by Lemma 2.3, we have \( r(G) \geq 4 \), a contradiction.

If \( G[x_1, x_2, y] \) is isomorphic to \( K_{1,2} \), then \( G[x, x_1, x_2, y] \) is isomorphic to \( P_3 \). Therefore \( r(G) \geq r(P_3) = 4 \), a contradiction.

If \( G[x_1, x_2, y] \) is isomorphic to \( K_3 \), then using the fact that neither \( x_1 \) nor \( x_2 \) is adjacent to \( x \), we can verify that \( r(G[x, x_1, y]) = 4 \), a contradiction.

Therefore no two vertices in \( X \) are adjacent.

(ii) Suppose not, then there exist \( x_1 \in X \) and \( y_1 \in Y \) such that \( x_1 \) and \( y_1 \) are not adjacent. Since \( x \) and \( y_1 \) are adjacent, we have \( x \) and \( x_1 \) are distinct. Due to the fact that \( G \) has no isolated vertex, we can choose a vertex \( z \) in \( G \) which is adjacent to \( x_1 \). By (i) we see \( z \in Y \). Then \( x \) and \( z \) are adjacent.
If $y_1$ and $z$ are not adjacent, then $G[x, x_1, y_1, z]$ is isomorphic to $P_4$. Hence $r(G[x, x_1, y_1, z]) > 3$, a contradiction.

If $y_1$ and $z$ are adjacent, then using the fact that neither $y_1$ nor $x$ is adjacent to $x_1$, we can verify that $r(G[x, x_1, y_1, z]) = 4$, a contradiction. Thus each vertex from $X$ and each vertex from $Y$ are adjacent. $\Box$

In order to prove Theorem 1.1, we prove the following lemma.

**Lemma 3.2.** Suppose that $G$ is a simple graph on $n$ vertices $(n \geq 2)$ and $G$ has no isolated vertex. Then $\eta(G) = n - 2$ if and only if $G$ is isomorphic to a complete bipartite graph $K_{n_1, n_2}$, where $n_1 + n_2 = n$, $n_1, n_2 > 0$.

**Proof.** The sufficiency is clear.

To prove the necessity, choose an arbitrary vertex $x$ in $G$. Let $Y = \Gamma(x)$ and $X = V(G) - Y$. Since $G$ has no isolated vertex, $x$ is not an isolated vertex. Then $Y$ is not an empty set. Since $x \in X$, $X$ is not empty.

We now prove any two vertices in $Y$ are not adjacent. Suppose that there exist $y_1 \in Y$ and $y_2 \in Y$ such that $y_1$ and $y_2$ are adjacent. Then $G[x, y_1, y_2]$ is a triangle. By Proposition 2.4, we have $\eta(G) \leq n - 3$, a contradiction.

From Lemma 3.1, we know that

(i) any two vertices in $X$ are not adjacent, and
(ii) any vertex from $X$ and any vertex from $Y$ are adjacent. Hence $G$ is isomorphic to a complete bipartite graph. $\Box$

Theorem 1.1 is immediate from the above lemma.

Two matrices $A_1$ and $A_2$ that are related by $B = P^{-1}AP$ where $P$ is a permutation matrix, are said to be permutation similar. Graphs $G_1$ and $G_2$ are isomorphic if and only if $A(G_1)$ and $A(G_2)$ are permutation similar.

We denote by $J_{p,q}$ the $p \times q$ matrix of all 1’s. Sometimes we simply use $J$ to denote an all 1’s matrix of appropriate or undetermined size. Similar conventions are used for zeros matrices with $O$ replacing $J$. Let $A_1$ and $A_2$ be two matrices. Define $A_1 \oplus A_2 = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix}$ and $A_1 \boxplus A_2 = \begin{bmatrix} A_1 & J \\ J & A_2 \end{bmatrix}$.

Then Theorem 1.1 can be written in the following equivalent form.

**Theorem 3.3.** Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 2$. Then $\eta(G) = n - 2$ if and only if $A(G)$ is permutation similar to matrix $O_{n_1,n_2} \oplus O_{n_2,n_2} \oplus O_{k,k}$, where $n_1 + n_2 + k = n$, $n_1, n_2 > 0$, and $k \geq 0$.

Some lemmas are given before we prove Theorem 1.2.

**Lemma 3.4.** Let $A$ be a symmetric $n \times n$ matrix and let the rank of $A$ be $k$. Then there exists a nonsingular principal minor of order $k$.

**Lemma 3.5.** Suppose that $G$ is a simple graph on $n$ vertices $(n \geq 3)$ and $G$ has no isolated vertex. Then $\eta(G) = n - 3$ if and only if $G$ is isomorphic to a complete tripartite graph $K_{n_1,n_2,n_3}$, where $n_1, n_2, n_3 > 0$. 

Proof. If $G$ is isomorphic to a complete tripartite graph, then $A(G)$ is permutation similar to $O \oplus O \oplus O$. Thus we can verify that $r(G) = 3$, i.e., $\eta(G) = n - 3$. The sufficiency follows.

To prove the necessity, choose an arbitrary vertex $x$ in $G$. Let $Y = \Gamma(x)$ and $X = V(G) - Y$. Since $G$ has no isolated vertex, $x$ is not an isolated vertex. Then $Y$ is not an empty set. Since $x \in X$, $X$ is not empty.

By Lemma 3.1, we have the following results.

**Claim 3.6.** Any two vertices in $X$ are not adjacent.

**Claim 3.7.** Any vertex from $X$ and any vertex from $Y$ are adjacent.

We now consider $G - X$, and prove

**Claim 3.8.** $r(G - X) \leq 2$.

**Proof.** Suppose $r(G - X) > 2$. Due to the fact that $r(G - X) \leq r(G) = 3$, we see $r(G - X) = 3$. By Lemma 3.4, there exists an induced subgraph $H$ of $G - X$ such that $H$ is order 3 and $r(H) = 3$. Then $H$ is a triangle. Since $x$ is adjacent to each vertex of $H$, $K_4$ is a subgraph of $G$. Therefore $\eta(G) \leq n - 4$, a contradiction. \[ \boxdot \]

Furthermore, we can show

**Claim 3.9.** $r(G - X) = 2$.

**Proof.** Suppose $r(G - X) < 2$, then $r(G - X) = 0$. Hence $G - X = O$. Therefore $r(G) = 2$, which contradicts $\eta(G) = n - 3$. \[ \boxdot \]

By Theorem 1.1, $G - X$ is isomorphic to $K_{n_1,n_2} + kK_1$, where $n_1,n_2 > 0$, and $k \geq 0$.

If $k > 0$, then $A(G)$ is permutation similar to

$$
\begin{bmatrix}
O & J & J & J \\
J & O & J & O \\
J & J & O & O \\
J & O & O & O
\end{bmatrix}
$$

Then $r(G) = 4$, a contradiction. Thus $k = 0$. So $G - X$ is isomorphic to $K_{n_1,n_2}$.

By Claim 3.6 and 3.7, we see $G$ is isomorphic to a complete tripartite graph $K_{n_1,n_2,n_3}$, where $n_1,n_2,n_3 > 0$. \[ \boxdot \]

Theorem 1.2 is immediate from the above lemma. Theorem 1.2 also has the following equivalent form.

**Theorem 3.10.** Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 3$. Then $\eta(G) = n - 3$ if and only if $A(G)$ is permutation similar to matrix

$$
O_{n_1,n_2} \oplus O_{n_2,n_3} \oplus O_{n_3,n_3} \oplus O_{k,k},
$$

where $n_1 + n_2 + n_3 + k = n$, $n_1,n_2,n_3 > 0$, and $k \geq 0$. 
4. Maximum nullity number of graphs. In the first section, we define

$$M(n, e) = \max \{ \eta(A) : A \in \Gamma(n, e) \}$$

where $\Gamma(n, e)$ is the set of all simple graphs with $n$ vertices and $e$ edges. In this section an upper bound of $M(n, e)$ is given. Let $g(m) = \max \{ k : k \mid m \text{ and } k \leq \sqrt{m} \}$, where $m$ is a positive integer, e.g., $g(1) = 1, g(2) = 1, g(4) = 2$.

**Theorem 4.1.** The following results hold:

(i) $M(n, 0) = n$. $M(n, \binom{n}{2}) = 0$.

(ii) $M(n, 1) = n - 2$ for $n \geq 2$.

(iii) $M(n, \binom{n}{2} - 1) = 1$ for $n > 2$.

(iv) $M(n, e) \leq n - 2$ for $e > 0$.

(v) $M(n, e) = n - 2$ if $e > 0$ and $g(e) + e/g(e) \leq n$.

(vi) $M(n, e) \leq n - 3$ if $e > 0$ and $g(e) + e/g(e) > n$.

**Proof.** (i) and (ii) are immediate from the definition.

(iii) Suppose $G \in \Gamma(n, \binom{n}{2} - 1)$. Then $G$ is isomorphic to $K_n$ with one edge deleted. Thus there exist two identical rows (columns) in $A(G)$. Therefore $A(G)$ is singular and $\eta(G) \geq 1$.

Since $G$ contains $K_{n-1}$, by Proposition 2.4, we have $\eta(G) \leq 1$. Hence $\eta(G) = 1$. Therefore $M(n, \binom{n}{2} - 1) = 1$.

(iv) From the fact that $\eta(G) \leq n - 2$ if $G$ is a simple graph on $n$ vertices and $G$ is not isomorphic to $nK_1$, we see that $M(n, e) \leq n - 2$ for $e > 0$.

(v) Let $n_1 = g(e), n_2 = e/g(e)$ and $k = n - n_1 - n_2$. Then $G = K_{n_1, n_2} + K_1 \in \Gamma(n, e)$ and $\eta(G) = n - 2$. Hence $M(n, e) = n - 2$.

(vi) Suppose $M(n, e) > n - 3$. Since $M(n, e) \leq n - 2$, we have $M(n, e) = n - 2$. Then there exists $G \in \Gamma(n, e)$ such that $\eta(G) = n - 2$. Hence $G = K_{n_1, n_2} + kK_1$. Therefore $n_1 \times n_2 = e$ and $n_1 + n_2 + k = n$. Without loss of generality, we may assume $n_1 \leq n_2$. Then $n_1 \leq \sqrt{e}$. Since $n_1 \mid n$, $n_1 \leq g(e)$.

Since $n_1 \leq \sqrt{e}$ and $g(e) \leq \sqrt{e}$, $g(e)n_1 \leq e$. Then $1 - \frac{e}{g(e)n_1} \leq 0$.

Since

$$g(e) + e/g(e) - n_1 - n_2 = g(e) - n_1 + e/g(e) - n_2 = g(e) - n_1 + e/g(e) - e/n_1$$

$$= g(e) - n_1 + e\frac{n_1 - g(e)}{g(e)n_1} = (g(e) - n_1)(1 - \frac{e}{g(e)n_1}) \leq 0,$$

$g(e) + e/g(e) \leq n_1 + n_2 \leq n$, which contradicts to $g(e) + e/g(e) > n$. \qed

The following immediate corollary gives an upper bound for $M(n, e)$ and characterizes when the upper bound is achieved.

**Corollary 4.2.** Suppose $e > 0$. Then $M(n, e) \leq n - 2$ and the equality holds if and only if $g(e) + e/g(e) \leq n$. 

Here we give a necessary condition for $M(n, e) = n - 3$.

**Theorem 4.3.** If $M(n, e) = n - 3$, then $e \leq n^2/3$.

**Proof.** Due to the fact that $M(n, e) = n - 3$, there exists $G \in \Gamma(n, e)$ such that $\eta(G) = n - 3$. Hence $G = K_{n_1, n_2, n_3} + kK_1$. Therefore $n_1 + n_2 + n_3 \leq n$ and $n_1n_2 + n_2n_3 + n_1n_3 = e$.

Since
\[(n_1 + n_2 + n_3)^2 = n_1^2 + n_2^2 + n_3^2 + 2(n_1n_2 + n_2n_3 + n_1n_3)\]
\[\geq n_1n_2 + n_2n_3 + n_1n_3 + 2(n_1n_2 + n_2n_3 + n_1n_3) = 3e,\]
then $n^2 \geq 3e$, i.e., $e \leq n^2/3$. \(\square\)

The following corollary is immediate.

**Corollary 4.4.** If $n^2/3 < e \leq \left(\frac{n}{3}\right)^2$, then $M(n, e) \leq n - 4$.

Finally we give a table for the exact values of $M(n, e)$, where $1 \leq n \leq 5$.

<table>
<thead>
<tr>
<th></th>
<th>$e=0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$M(5, 5) = 2$ is obtained by Theorem 4.1(vi) and the fact that $\eta(K_{1,1,2} + K_1) = 2$. $M(5, 7) = 2$ is from Theorem 4.1(vi) and the fact that $\eta(K_{1,1,3}) = 2$, and $M(5, 8) = 2$ is from Theorem 4.1(vi) and the fact that $\eta(K_{1,2,2}) = 2$.

**Acknowledgment.** The authors would like to thank the referee for comments and suggestions which improved the presentation.

**REFERENCES**