2006

Bounds for the spectral radius of block H-matrices

Wei Zhang
avee@sjtu.edu.cn

Zheng-zhi Han

Follow this and additional works at: https://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1237

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
BOUNDS FOR THE SPECTRAL RADIUS OF BLOCK H-MATRICES

WEI ZHANG† AND ZHENG-ZHI HAN†

Key words. Spectral radius, H-matrices, Block H-matrices.

AMS subject classifications. 65F10, 65F15.

1. Introduction. H-matrices have important applications in many fields, such as numerical analysis, control theory, and mathematical physics. Recently, Huang and Ran [5] have presented a simple upper bound for the spectral radius of (block) H-matrices. In this paper, we give some new upper bounds.

A square complex or real matrix A is called an H-matrix if there exists a square positive diagonal matrix X such that AX is strictly diagonally dominant (SDD) [5]. Let $\mathbb{C}^{n,n}(\mathbb{R}^{n,n})$ denote the set of $n \times n$ complex (real) matrices. If $A = [a_{ij}] \in \mathbb{C}^{n,n}$, we write $|A| = |a_{ij}|$, where $|a_{ij}|$ is the modulus of a_{ij}. We denote by $\rho(A)$ the spectral radius of A, which is just the radius of the smallest disc centered at the origin in the complex plane that includes all the eigenvalues of A (see [4, Def. 1.1.4]).

Throughout the paper, we let $\|\cdot\|$ denote a consistent family of norms on matrices of all sizes, which satisfies the following four axioms:

1. $\|A\| \geq 0$, and $\|A\| = 0$ if and only if $A = 0$;
2. $\|cA\| = |c| \|A\|$ for all complex scalars c;
3. $\|A + B\| \leq \|A\| + \|B\|$, where A and B are in the same size; and
4. $\|AB\| \leq \|A\| \|B\|$ provided that AB is defined.

Axioms (1) and (4) ensure that $\|I\| \geq 1$, where I is the identity matrix. For example, the Frobenius norm $\|\cdot\|_F$, 1-norm $\|\cdot\|_1$, and ∞-norm $\|\cdot\|_{\infty}$ (see e.g., [4, Chap. 5]) are all consistent families of norms.

Let $A = [a_{ij}] \in \mathbb{C}^{n,n}$ be partitioned in the following form

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \cdots & \cdots & \cdots & \cdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{pmatrix}$$

Received by the editors 24 August 2006. Accepted for publication 12 October 2006. Handling Editor: Roger A. Horn.

†Department of Automation, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China (avee@sjtu.edu.cn).
in which \(A_{ij} \in \mathbb{C}^{n_i,n_j} \) and \(\sum_{i=1}^{k} n_i = n \). If each diagonal block \(A_{ii} \) is nonsingular and
\[
\left\| A_{ii}^{-1} \right\|^{-1} > \sum_{j \neq i} \left\| A_{ij} \right\| \quad \text{for all} \quad i = 1, 2, \ldots, k,
\]
then \(A \) is said to be \textit{block strictly diagonally dominant with respect to} \(\| \cdot \| \) (BSDD) [3]; if there exist positive numbers \(x_1, x_2, \ldots, x_k \) such that
\[
x_i \left\| A_{ii}^{-1} \right\|^{-1} > \sum_{j \neq i} x_j \left\| A_{ij} \right\| \quad \text{for all} \quad i = 1, 2, \ldots, k,
\]
then \(A \) is said to be \textit{block H-matrix with respect to} \(\| \cdot \| \) [6].

Theorem 1.1. ([5]) Let \(A = [a_{ij}] \in \mathbb{C}^{n,n} \). If \(A \) is an H-matrix, then
\[
\rho(A) < 2 \max_i |a_{ii}|.
\]

Theorem 1.2. ([5]) Let \(A \in \mathbb{C}^{n,n} \) be partitioned as in (1.1). Let \(\| \cdot \| \) be a consistent family of norms. If \(A \) is a block H-matrix with respect to \(\| \cdot \| \), then
\[
\rho(A) < \max_i \left\{ \| A_{ii} \| + \left\| A_{ii}^{-1} \right\|^{-1} \right\}.
\]

2. **Main results.** In this section, we present some new bounds for the spectral radius of an H-matrix and a block H-matrix, respectively. We need the following two lemmas.

Lemma 2.1. ([4, Thm 8.1.18]) Let \(A = [a_{ij}] \in \mathbb{C}^{n,n} \). Then \(\rho(A) \leq \rho(|A|) \).

Lemma 2.2. ([1]) Let \(A = [a_{ij}] \in \mathbb{R}^{n,n} \) be a nonnegative matrix. Then
\[
\rho(A) \leq \max_{i \neq j} \frac{1}{2} \left\{ a_{ii} + a_{jj} + \left[(a_{ii} - a_{jj})^2 + 4 \sum_{k \neq i} a_{ik} \sum_{k \neq j} a_{jk} \right]^{1/2} \right\}.
\]

The following is one of the main results of this paper.

Theorem 2.3. Let \(A = [a_{ij}] \in \mathbb{C}^{n,n} \) be an H-matrix. Then
\[
\rho(A) < \max_{i \neq j} (|a_{ii}| + |a_{jj}|) \leq 2 \max_i |a_{ii}|.
\]

Proof. Let \(X = \text{diag}(x_1, x_2, \ldots, x_n) \) be a square positive diagonal matrix such that \(AX \) is SDD. Then \(X^{-1}AX \) is also SDD, i.e.,
\[
|a_{ii}| = |X^{-1}AX|_{ii} > \sum_{j \neq i} |X^{-1}AX|_{ij} = \sum_{j \neq i} \frac{|a_{ij}|x_j}{x_i} \quad \text{for all} \quad i = 1, 2, \ldots, n.
\]
Bounds for the Spectral Radius of Block H-matrices

The spectral radii of A and $X^{-1}AX$ are equal since the two matrices are similar. Lemma 2.1 and Lemma 2.2 ensure that

$$\rho(A) = \rho(X^{-1}AX) \leq \rho(|X^{-1}AX|)$$

$$\leq \max_{i \neq j} \frac{1}{2} \left\{ |a_{ii}| + |a_{jj}| + \left(|a_{ii}| - |a_{jj}| \right)^2 + 4 \sum_{k \neq i} |a_{ik}|x_k \sum_{k \neq j} |a_{jk}|x_k \right\}^{\frac{1}{2}}$$

$$< \max_{i \neq j} \frac{1}{2} \left\{ |a_{ii}| + |a_{jj}| + \left(|a_{ii}| - |a_{jj}| \right)^2 + 4|a_{i1}||a_{j1}| \right\}^{\frac{1}{2}}$$

$$= \max_{i} (|a_{ii}| + |a_{jj}|) \leq 2 \max_{i} |a_{ii}|. \quad \square$$

We now consider block H-matrices. The following lemma was stated in [2] but the proof offered there is not correct.

LEMMA 2.4. ([2]) Let $A = [A_{ij}] \in \mathbb{R}^{n \times n}$ be a nonnegative block matrix of the form (1.1). Let $B = \|A_{ij}\|$, where $\|\|$ is a consistent family of norms. Then

$$\rho(A) \leq \rho(B).$$

Proof. First we assume that A is a positive matrix. By Perron’s Theorem [4, Thm 8.2.11], $\rho(A)$ is an eigenvalue of A corresponding to a positive eigenvector x, i.e.,

$$Ax = \rho(A)x, \quad x > 0.$$

Partition $x^T = (x_1^T, \ldots, x_k^T)$, where each $x_i \in \mathbb{R}^{n_i}$, $i = 1, \ldots, k$. Let $z_i = \|x_i\|$. Define $z := (z_1, \ldots, z_k)^T \in \mathbb{R}^k$, so $z > 0$ and for all $1 \leq i \leq k$,

$$\sum_{j=1}^{k} A_{ij}x_j = \rho(A)x_i,$$

which implies

$$\rho(A)z_i = \rho(A)\|x_i\| = \left\| \sum_{j=1}^{k} A_{ij}x_j \right\| \leq \sum_{j=1}^{k} \|A_{ij}\| \|x_j\| = \sum_{j=1}^{k} \|A_{ij}\| z_j.$$

Since the inequality $\rho(A)z_i \leq \sum_{j=1}^{k} \|A_{ij}\| z_j$ holds for all $i = 1, \ldots, k$, we have

$$\rho(A)z \leq Bz.$$

Since B is nonnegative and $z > 0$, we obtain $\rho(A) \leq \rho(B)$ [4, Cor. 8.1.29].

Next we show the inequality (2.2) holds for all nonnegative matrices A. For any given $\varepsilon > 0$, define $A(\varepsilon) := [a_{ij} + \varepsilon]$ and let $B(\varepsilon) := \|A_{ij}(\varepsilon)\|$. Since every $A_{ij}(\varepsilon)$ is positive, therefore $\rho(A(\varepsilon)) \leq \rho(B(\varepsilon))$. By the continuity of $\rho(\cdot)$, we have

$$\rho(A) = \lim_{\varepsilon \to 0} \rho(A(\varepsilon)) \leq \lim_{\varepsilon \to 0} \rho(B(\varepsilon)) = \rho(B). \quad \square$$
THEOREM 2.5. Let $A \in \mathbb{C}^{n \times n}$ be partitioned as in (1.1). Suppose A is a block H-matrix with respect to a consistent family of norms $\|\cdot\|$. Then

\[\rho(A) \leq \max_{i \neq j} \frac{1}{2} \left\{ \left\| A_{ii} \right\| + \left\| A_{jj} \right\| + \left[\left\| A_{ii} \right\| - \left\| A_{jj} \right\| \right]^2 + 4 \left\| A_{ii}^{-1} \right\|^{-1} \left\| A_{jj}^{-1} \right\|^{-1} \right\}^{\frac{1}{2}} \right\}

\[\leq \max_{i \neq j} \left(\left\| A_{ii} \right\| + \left\| A_{jj} \right\| \right) + \frac{1}{2} \left\{ \left\| A_{ii} \right\| + \left\| A_{jj} \right\| + \left[\left\| A_{ii} \right\| - \left\| A_{jj} \right\| \right]^2 + 4 \left\| A_{ii}^{-1} \right\|^{-1} \left\| A_{jj}^{-1} \right\|^{-1} \right\}^{\frac{1}{2}} \right\}

Proof. Let x_1, x_2, \ldots, x_k be positive numbers such that

\[x_i \left\| A_{ii}^{-1} \right\|^{-1} > \sum_{j \neq i} x_j \left\| A_{ij} \right\| \quad \text{for all} \quad i = 1, 2, \ldots, k.

Let $X = \text{diag}(x_1 I_{n_1}, x_2 I_{n_2}, \ldots, x_k I_{n_k})$. Then AX is BSDD. Let

\[B = X^{-1}AX = \begin{pmatrix}
A_{11} & \ldots & \frac{x_k}{x_i} A_{1k} \\
\frac{x_2}{x_1} A_{21} & \ldots & \frac{x_k}{x_1} A_{2k} \\
\vdots & \ddots & \vdots \\
\frac{x_k}{x_n} A_{k1} & \ldots & A_{kk}
\end{pmatrix},
\]

Then $B = [B_{ij}]$ is also BSDD. Let $C = [\|B_{ij}\|] \in \mathbb{R}^{k \times k}$. Then Lemma 2.2 and Lemma 2.4 ensure that

\[\rho(A) = \rho(B) \leq \rho(C)
\]

\[\leq \max_{i \neq j} \frac{1}{2} \left\{ \left\| A_{ii} \right\| + \left\| A_{jj} \right\| + \left[\left\| A_{ii} \right\| - \left\| A_{jj} \right\| \right]^2 + 4 \left\| A_{ii}^{-1} \right\|^{-1} \left\| A_{jj}^{-1} \right\|^{-1} \right\}^{\frac{1}{2}} \right\}

Moreover, we have $1 \leq \|I\| = \|A_{ii}A_{ii}^{-1}\| \leq \|A_{ii}\| \|A_{ii}^{-1}\|$, so $\|A_{ii}^{-1}\|^{-1} \leq \|A_{ii}\|$ and

\[\|A_{ii}\| + \|A_{jj}\| + \left[\|A_{ii}\| - \|A_{jj}\| \right]^2 + 4 \|A_{ii}^{-1}\|^{-1} \|A_{jj}^{-1}\|^{-1} \right\}^{\frac{1}{2}} \right\}

\[\leq \|A_{ii}\| + \|A_{jj}\| + \left[\|A_{ii}\| - \|A_{jj}\| \right]^2 + 4 \|A_{ii}\| \|A_{jj}\| \right\}^{\frac{1}{2}} \quad \square
\]

REMARK 2.6. Without loss of generality, for given $i \neq j$, assume that

\[\|A_{ii}\| + \|A_{ii}^{-1}\|^{-1} \geq \|A_{jj}\| + \|A_{jj}^{-1}\|^{-1}.
\]
Then
\[
\|A_{ii}\| + \|A_{jj}\| + \left[\left(\|A_{ii}\| - \|A_{jj}\|\right)^2 + 4\|A_{ii}^{-1}\|^{-1}\|A_{jj}^{-1}\|^{-1}\right]^{\frac{1}{2}}
\]
\[
\leq \|A_{ii}\| + \|A_{jj}\| + \left[\left(\|A_{ii}\| - \|A_{jj}\|\right)^2 + 4\|A_{ii}^{-1}\|^{-1}\left(\|A_{ii}\| + \|A_{jj}^{-1}\|^{-1} - \|A_{jj}\|\right)\right]^{\frac{1}{2}}
\]
\[
= \|A_{ii}\| + \|A_{jj}\| + \left(\|A_{ii}\| - \|A_{jj}\| + 2\|A_{ii}^{-1}\|^{-1}\right)^{\frac{1}{2}}
\]
\[
= \|A_{ii}\| + \|A_{jj}\| + \left(\|A_{ii}\| + \|A_{ii}^{-1}\|^{-1} - \|A_{jj}\|\right) + \|A_{ii}^{-1}\|^{-1}
\]
\[
= 2\left(\|A_{ii}\| + \|A_{ii}^{-1}\|^{-1}\right) \leq 2\max_i \left(\|A_{ii}\| + \|A_{ii}^{-1}\|^{-1}\right).
\]

Hence, the first bound in (2.3) is at least as good as the bound (1.2).

Example. Consider the block matrix
\[
A = \begin{bmatrix}
4 & -2 & 1.5 & 0.5 \\
-2 & 6 & 1 & -0.5 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 1 & 0 \\
0.5 & 0.5 & 0 & 1
\end{bmatrix}
\]
and the norms \(\|\cdot\|_\infty\). Then \(A\) is a block H-matrix with spectral radius 7.2152. The bound in Theorem 1.2 is \(\rho(A) \leq 10.5\). The bound in Theorem 2.5 is \(\rho(A) \leq 8.34\).

Acknowledgment. The authors would like to thank the handling editor Roger A. Horn and an anonymous referee for their helpful suggestions.

REFERENCES