2006

Essentially Hermitian matrices revisited

Stephen W. Drury
drury@math.mcgill.ca

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation

DOI: https://doi.org/10.13001/1081-3810.1239

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
ESSENTIALLY HERMITIAN MATRICES REVISITED

S.W. DRURY

Abstract. The following case of the Determinantal Conjecture of Marcus and de Oliveira is established. Let A and C be hermitian $n \times n$ matrices with prescribed eigenvalues a_1, \ldots, a_n and c_1, \ldots, c_n, respectively. Let κ be a non-real unimodular complex number, $B = \kappa C, b_j = \kappa c_j$ for $j = 1, \ldots, n$. Then
\[
\det(A - B) \in \text{co} \left\{ \prod_{j=1}^{n} (a_j - b_{\sigma(j)}); \sigma \in S_n \right\},
\]
where S_n denotes the group of all permutations of $\{1, \ldots, n\}$ and co the convex hull taken in the complex plane.

1. Introduction. The celebrated Determinantal Conjecture of Marcus [7] and de Oliveira [8] can be stated as follows.

Conjecture 1.1. [The de Oliveira – Marcus Conjecture (OMC)] Let A and B be normal $n \times n$ matrices with prescribed complex eigenvalues a_1, \ldots, a_n and b_1, \ldots, b_n, respectively. Let Δ_0 be the subset of \mathbb{C} given by
\[
\Delta_0 = \text{co} \left\{ \prod_{j=1}^{n} (a_j - b_{\sigma(j)}); \sigma \in S_n \right\}.
\]
Then
\[
\det(A - B) \in \Delta_0,
\]
where S_n denotes the group of all permutations of $\{1, \ldots, n\}$ and co the convex hull taken in the complex plane.

The purpose of this paper is to establish the following theorem.

Theorem 1.2. Conjecture 1.1 holds in case that A is hermitian and B a non-real scalar multiple of a hermitian matrix.

Conjecture 1.1 is known in a great many special cases. The case in which A and B are both hermitian was settled by Fiedler[6]. The case in which A is positive definite and B is skew hermitian was settled by da Providência and Bebiano[9]. The case A is positive definite and B a non-real scalar multiple of a hermitian matrix (among others) was settled by N. Bebiano, A. Kovačec, and J. da Providência [5]. The proof of Theorem 1.2 borrows many ideas from these papers. The real content of the present article is to weaken the hypothesis that A is positive definite to A hermitian in [5].

The case in which A and B are both unitary was settled by Bebiano and da Providência[4], the key observation being that Conjecture 1.1 is unchanged under a
simultaneous application of a fractional linear (Möbius) transformation of the eigenvalues \(a_j \) and \(b_j \), allowing a reduction to the case in which \(A \) and \(B \) are hermitian.

Theorem 1.2 has the following corollary proved using the Möbius transformation trick and a number of other results.

Corollary 1.3. Let \(C_A \) and \(C_B \) be circles in the complex plane. Let \(a_1, \ldots, a_n \in C_A \) and \(b_1, \ldots, b_n \in C_B \), then Conjecture 1.1 holds.

Proof. The case \(C_A = C_B \) can be reduced to the case in which \(A \) and \(B \) are both hermitian. The case of non-intersecting circles is established in [1]. The case of circles that touch can be reduced to the case in which \(C_B \) is the real axis and \(C_A = \{ z; z \in \mathbb{C}, 3z = 1 \} \) by means of the Möbius transformation trick. This case, which amounts to showing that

\[
\det(iI + C - B) \in \text{co}\left\{ \prod_{j=1}^{n} (i + c_j - b_{\sigma(j)}); \sigma \in S_n \right\}
\]

in case \(b_j, c_j \) are all real (i.e. \(B \) and \(C \) hermitian) was handled by N. Bebiano, A. Kovačec, and J. da Providência in [5]. It can also be deduced from the main result in an earlier paper Drury[2], where it is shown that (1.1) is valid even if \(i \) is treated as an indeterminate and the convex hull is taken in the ring of polynomials \(\mathbb{R}[i] \). The final case of circles that intersect at two points can be obtained using the Möbius transformation trick and the result established in this article. □

We start by stating some ideas extracted from [9] and [5].

Let \(\Delta \) be a closed bounded subset of \(\mathbb{C} \). Let \(z \) be an extreme point of \(\text{co}(\Delta) \), which therefore necessarily lies in \(\Delta \). We will say that \(z \) is almost flat if there is a smooth curve segment passing through \(z \), lying entirely inside \(\Delta \) and having zero curvature at \(z \).

Lemma 1.4. The set \(\Delta \) is contained in the closed convex hull of those extreme points of \(\text{co}(\Delta) \) that are not almost flat.

Lemma 1.5. Let \(A \) and \(B \) be normal matrices and \(P \) skew hermitian. Let \(T = A - B \) be invertible and consider a variation \(T(t) = \exp(tP)A \exp(-tP) - B \). Then the expansion

\[
\frac{\det(T(t))}{\det(T)} = 1 + u_1 t + u_2 t^2 + \cdots
\]

is valid about \(t = 0 \) where \(u_1 = \text{tr}(T^{-1}[P, A]) = \text{tr}(T^{-1}[P, B]) \) and

\[
u_2 = \frac{1}{2} \left(\text{tr}(T^{-1}[P, A]) \text{tr}(T^{-1}[P, B]) - \text{tr}(T^{-1}[P, A] T^{-1}[P, B]) \right)
\]

\[
= \text{tr}(T^{-1}[P, A] \land T^{-1}[P, B]).
\]

We note that for \(S \) an operator on an inner product space \(E \), the operator \(S \land S \) is defined on the inner product space \(E \land E \) by extending \((S \land S)(e_1 \land e_2) = Se_1 \land Se_2 \) by linearity. This definition is further extended to \(S_1 \land S_2 \) for possibly different operators \(S_1 \) and \(S_2 \) on \(E \) either by the polarization identity

\[
S_1 \land S_2 = \frac{1}{4} \left(S_1 + S_2 \right) \land \left(S_1 + S_2 \right) - \left(S_1 - S_2 \right) \land \left(S_1 - S_2 \right)
\]
or by $(S_1 \wedge S_2)(e_1 \wedge e_2) = \frac{1}{2}(S_1 e_1 \wedge S_2 e_2 + S_2 e_1 \wedge S_1 e_2)$. We remark in particular that if S is a rank one operator, then $S \wedge S$ is zero.

2. A Quadratic Equation. We now specialize to the case of interest in this article by proving the following.

Proposition 2.1. Let $n \geq 3$ and $\kappa \in \mathbb{C} \setminus \mathbb{R}$ with $|\kappa| = 1$. Let A be an $n \times n$ invertible hermitian matrix with eigenvalues a_1, \ldots, a_n and B an $n \times n$ matrix with $\kappa^{-1}B$ hermitian and with eigenvalues b_1, \ldots, b_n. We assume that the a_j and b_j are generic, specifically we suppose that they are non zero, distinct, distinct from their negatives and that the n^2 numbers $b_j a_{k}^{-1}$ $(1 \leq j, k \leq n)$ are distinct. Suppose also that A and B have no common nontrivial invariant linear subspace and that $\det(A - B)$ is an extreme point of $\text{co}(\Delta)$, where

$$\Delta = \{\det(U^* \text{diag}(a_1, \ldots, a_n)U - V^* \text{diag}(b_1, \ldots, b_n)V); U, V \text{ unitary}\}.$$

Let X denote the matrix $\kappa^{-1}BA^{-1}$. Then either $A - B$ is singular, or X satisfies a quadratic equation with real coefficients

$$\begin{align*}
\omega(I - \pi X) + \omega(I - \kappa X) = \lambda(I - \kappa X)(I - \pi X), \\
\lambda x^2 - (\lambda \kappa + \lambda \pi - \kappa \omega - \pi \omega)x + (\lambda - \omega - \pi)I = 0,
\end{align*}
$$

where ω is a unimodular complex number and $\lambda \in \mathbb{R} \setminus \{0\}$ is suitably chosen. Further, we may write X in one of two possible forms:

- $X = \rho_1 E_1 + \rho_2 E_2$ where E_1 and E_2 are complementary linear projections, ρ_1, ρ_2 being the roots of (2.2).
- $X = \rho I + \kappa N$ where ρ is a double root of (2.2) and $N^2 = 0$.

We remark that the approach used in [5] is to take $X = \kappa^{-1}A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$, a normal matrix, with the advantages that the second case above does not occur, that in the first case the projections E_1 and E_2 are orthogonal projections and that the roots of (2.2) are real and distinct.

Proof. We assume that $A - B$ is non singular. Since $\det(A - B)$ is an extreme point of Δ, it possesses a supporting hyperplane. We choose ω to be a complex number of unit modulus such that the direction $\omega \det(A - B)$ is normal to this hyperplane. It is now clear that for every choice of skew hermitian P the function

$$t \mapsto \Re \omega \frac{\det(T(t))}{\det(T)}$$

has a critical point at $t = 0$. Consequently $\Re \omega u_1 = 0$. Thus, for all P skew hermitian, we have

$$\Re \omega \text{tr}(P[T^{-1}, A]) = 0$$

or equivalently $H = [T^{-1}, A]$ is hermitian. Let $C = \kappa^{-1}B$, so that C is hermitian. Letting $X = \kappa^{-1}BA^{-1} = CA^{-1}$, $X^* = A^{-1}C = A^{-1}XA$. Also $B = \kappa X A$, $T = A - B = (I - \kappa X)A$, $T^{-1} = A^{-1}(I - \kappa X)^{-1}$, $H = \Re(A^{-1}(I - \kappa X)^{-1}A - (I - \kappa X)^{-1}) = \Re((I - \kappa X^*)^{-1} - (I - \kappa X)^{-1})$. Since H is hermitian, we get

$$\Re((I - \kappa X^*)^{-1} - (I - \kappa X)^{-1}) = \omega((I - \pi X)^{-1} - (I - \pi X^*)^{-1}),$$
or
\[
\omega(I - \pi X)^{-1} + \omega(I - \kappa X)^{-1} = \omega(I - \pi X^*)^{-1} + \omega(I - \pi X^*)^{-1}
\]
\[
= A^{-1}(\omega(I - \kappa X)^{-1} + \omega(I - \pi X)^{-1})A
\]
so that,
\[
[A, \omega(I - \kappa X)^{-1} + \omega(I - \pi X)^{-1}] = 0.
\]
Since the eigenvalues of \(A \) are assumed to be all distinct, we see that the matrix
\[
\omega(I - \kappa X)^{-1} + \omega(I - \pi X)^{-1}
\]
diagonals with \(A \). Any eigenspace of this operator is necessarily invariant under both \(A \) and \(X \) and hence also under \(B \). It follows that the operator \(\omega(I - \kappa X)^{-1} + \omega(I - \pi X)^{-1} = \lambda I \) for some suitable \(\lambda \). Thus \(X \) satisfies the quadratic equation (2.1). Taking adjoints we get
\[
\overline{\lambda X} = \omega(I - \pi X^*)^{-1} + \omega(I - \kappa X^*)^{-1}
\]
\[
= A^{-1}(\omega(I - \pi X)^{-1} + \omega(I - \kappa X)^{-1})A
\]
\[
= A^{-1}(\lambda I)A = \lambda I
\]
so that \(\lambda \) is necessarily real. Note that if \(\lambda = 0 \) then the equation (2.1) reduces to a linear one. If this equation vanishes identically, then both \(\omega + \omega = 0 \) and \(\kappa \omega + \pi \omega = 0 \), forcing \(\kappa \) to be real, which is not allowed. Thus \(X \) is a scalar multiple of the identity and it follows that \(A \) and \(B \) commute — a contradiction. So we can assert that \(\lambda \neq 0 \).

The remainder of the assertions follow easily. \(\square \)

3. The Second Order Term — Distinct Roots Cases. We suppose that we are in the first case of Proposition 2.1.

Proposition 3.1. With the hypotheses and notations of Proposition 2.1, for \(P \) an arbitrary skew hermitian matrix we obtain for suitable scalars \(C_1 \) and \(C_2 \)
\[
\Re\omega\left(u_2 - C_1 \text{tr}(E_1 Z \wedge (E_1 Z)) - C_2 \text{tr}((E_2 Z) \wedge (E_2 Z))\right) = 0,
\]
where \(Q = APA^{-1} \) and \(Z = P - Q \).

Proof. Let \(\rho_j \), \((j = 1, 2) \) be the roots of (2.1). It will be noted that \(X^* \) also satisfies a similar quadratic equation, the roots of which are \(\overline{\rho_j} \) \((j = 1, 2) \). Then we have that \(X = \rho_1 E_1 + \rho_2 E_2 \) where \(E_j \) \((j = 1, 2) \) are (not necessarily orthogonal) linear projections onto linear subspaces \(V_j \) \((j = 1, 2) \), according to the direct sum \(V = V_1 \oplus V_2 \). We can write \(X^* = \overline{\rho_1} E_1^* + \overline{\rho_2} E_2^* \) where \(E_j^* \) \((j = 1, 2) \) are linear projections onto the linear subspaces \(V_j^+ \), according to the direct sum \(V = V_2^+ \oplus V_1^+ \), the notation \(j' \) meaning \(3 - j \). Since \(X^* = A^{-1}XA \), we find two ways of writing \(X^* \) as a linear combination of two linear projections, namely
\[
\overline{\rho_1} E_1^* + \overline{\rho_2} E_2^* = X^* = \rho_1 A^{-1} E_1 A + \rho_2 A^{-1} E_2 A
\]
and there are two cases. In case 1 in which (2.1) has two real roots
\[
E_j^* = A^{-1} E_j A, \quad \overline{\rho_j} = \rho_j, \quad j = 1, 2
\]
and in case 2 in which (2.2) has a pair of complex conjugate roots

\[E_j^* = A^{-1}E_j' A, \quad \overline{\rho_j} = \rho_j', \quad j = 1, 2. \]

We note that in case 2, \(\dim(V_1) = \dim(V_2) \) which forces \(n \) to be even. We examine the first part of the second order term which involves

\[
\text{tr}(T^{-1}[P, A]) \text{tr}(T^{-1}[P, B]) \\
= \kappa \text{tr}(A^{-1}(I - \kappa X)^{-1}[P, A]) \text{tr}(A^{-1}(I - \kappa X)^{-1}(PXA - XAP)) \\
= \kappa \text{tr}((I - \kappa X)^{-1}Z) \text{tr}(X(I - \kappa X)^{-1}Z) \\
= \text{tr}((c_1 E_1 + c_2 E_2)Z) \text{tr}(((c_1 - 1)E_1 + (c_2 - 1)E_2)Z) \\
= \alpha_1 + \beta_1,
\]

where using the notation \(c_j = (1 - \kappa \rho_j)^{-1} \), \(\alpha_1 \) consists of the main terms

\[
\alpha_1 = c_1(c_2 - 1) \text{tr}(E_1 Z)^2 + c_2(c_2 - 1) \text{tr}(E_2 Z)^2
\]

and \(\beta_1 \) consists of the cross terms

\[
\beta_1 = (c_1(c_2 - 1) + c_2(c_2 - 1)) \text{tr}(E_1 Z) \text{tr}(E_2 Z).
\]

We observe that

\[
c_1(c_2 - 1) + c_2(c_2 - 1) = \kappa \frac{\rho_1 + \rho_2}{(1 - \kappa \rho_1)(1 - \kappa \rho_2)} = \omega \frac{\rho_1 + \rho_2}{\kappa - \kappa},
\]

since \(\rho_1 + \rho_2 \) is real and

\[
\lambda \kappa^{-2}(1 - \kappa \rho_1)(1 - \kappa \rho_2)
\]

is the result of substituting \(\rho = \kappa^{-1} \) into the left hand side of (2.2). So \(\beta_1 \) will be tangential if \(\text{tr}(E_1 Z) \text{tr}(E_2 Z) \) is real. In case 1

\[
\text{tr}(E_j Z) = \text{tr}((E_j - A^{-1}E_j A)P) = \text{tr}((E_j - E_j^*)P), \quad j = 1, 2,
\]

which is real, and in case 2

\[
\text{tr}(E_j Z) = \text{tr}((E_j - A^{-1}E_j A)P) = \text{tr}((E_j + E_j^* - I)P), \quad j = 1, 2,
\]

which is pure imaginary. In either case, the product \(\text{tr}(E_1 Z) \text{tr}(E_2 Z) \) is real.

The second part of the second order term involves

\[
\text{tr}(T^{-1}[P, A]T^{-1}[P, B]) \\
= \kappa \text{tr}(A^{-1}(I - \kappa X)^{-1}(PA - AP)A^{-1}(I - \kappa X)^{-1}(PXA - XAP)) \\
= \kappa \text{tr}(X(I - \kappa X)^{-1}P(I - \kappa X)^{-1}P) - \kappa \text{tr}(X(I - \kappa X)^{-1}APA^{-1}(I - \kappa X)^{-1}P) \\
- \kappa \text{tr}((I - \kappa X)^{-1}P(I - \kappa X)^{-1}XAPA^{-1}) \\
+ \kappa \text{tr}((I - \kappa X)^{-1}APA^{-1}(I - \kappa X)^{-1}XAPA^{-1}) \\
= \kappa \text{tr}(X(I - \kappa X)^{-1}P(I - \kappa X)^{-1}P) + \kappa \text{tr}(X(I - \kappa X)^{-1}Q(I - \kappa X)^{-1}Q) \\
- 2\kappa \text{tr}(X(I - \kappa X)^{-1}Q(I - \kappa X)^{-1}P) \\
= \alpha_2 + \beta_2,
\]
where
\[\alpha_2 = c_1(c_1 - 1) \text{tr}(E_1 P E_1 P + E_1 Q E_1 Q - 2E_1 P E_1 Q) + c_2(c_2 - 1) \text{tr}(E_2 P E_2 P + E_2 Q E_2 Q - 2E_2 P E_2 Q) = c_1(c_1 - 1) \text{tr}(E_1 Z E_1 Z) + c_2(c_2 - 1) \text{tr}(E_2 Z E_2 Z) \]
and
\[\beta_2 = (c_1(c_2 - 1) + c_2(c_1 - 1)) \text{tr}(E_1 P E_2 P + E_1 Q E_2 Q) - 2c_1(c_2 - 1) \text{tr}(E_2 Q E_1 P) - 2c_2(c_1 - 1) \text{tr}(E_1 Q E_2 P) = (c_1(c_2 - 1) + c_2(c_1 - 1)) \text{tr}(E_1 Z E_2 Z) + (c_1(c_2 - 1) - c_2(c_1 - 1)) \text{tr}(E_1 Q E_2 P - E_1 P E_2 Q). \]

We have \(Z^* = (P - APA^{-1})^* = -P + A^{-1} P A = A^{-1} Z A \). In case 1 we find
\[(E_1 Z E_2 Z)^* = A^{-1} Z A A^{-1} E_2 AA^{-1} Z A A^{-1} E_1 A = A^{-1} Z E_2 Z E_1 A \]
so that \(\text{tr}(E_1 Z E_2 Z) \) is real. This is also correct in case 2 since then
\[(E_1 Z E_2 Z)^* = A^{-1} Z A (I - A^{-1} E_2 A) A^{-1} Z A (I - A^{-1} E_1 A) \]
and therefore (using \(E_1 + E_2 = I \))
\[\overline{\text{tr}(E_1 Z E_2 Z)} = \text{tr}(Z (I - E_2 Z) (I - E_1)) = \text{tr}(Z E_1 Z E_2) = \text{tr}(E_1 Z E_2 Z). \]

Now
\[2(c_1 - 1) - c_2(c_1 - 1) = \kappa \frac{\rho_2 - \rho_1}{(1 - \kappa \rho_1)(1 - \kappa \rho_2)} = \omega \lambda \frac{\rho_2 - \rho_1}{\rho - \kappa} \]
again since
\[\lambda \kappa^{-2}(1 - \kappa \rho_1)(1 - \kappa \rho_2) = (\kappa^{-2} - 1) \omega. \]
The quantity (3.1) is a pure imaginary multiple of \(\omega \) in case 1 and real multiple of \(\omega \) in case 2.

It remains to show that \(\text{tr}(E_1 Q E_2 P - E_1 P E_2 Q) \) is real in case 1 and pure imaginary in case 2. In case 1
\[(E_1 Q E_2 P - E_1 P E_2 Q)^* = P A^{-1} E_2 AA^{-1} P A A^{-1} E_1 A - A^{-1} P A A^{-1} E_2 A P A^{-1} E_1 A, \]
which gives
\[\overline{\text{tr}(E_1 Q E_2 P - E_1 P E_2 Q)} = \text{tr}(Q E_2 P E_1 - P E_2 Q E_1) \]
and in case 2,
\[\overline{\text{tr}(E_1 Q E_2 P - E_1 P E_2 Q)} = \text{tr}(Q E_1 P E_2 - P E_1 Q E_2). \]

Consequently the second order term is
\[c_1(c_1 - 1) \text{tr}(E_1 Z \wedge E_1 Z) + c_2(c_2 - 1) \text{tr}(E_2 Z \wedge E_2 Z) + \frac{1}{2} (\beta_1 + \beta_2). \]
The term \(\frac{1}{2} (\beta_1 + \beta_2) \) is always tangentially aligned. \(\square \)
4. The Second Order Term — Equal Roots Case. We suppose that we are in the second case of Proposition 2.1 to be designated case 3 in the sequel.

Proposition 4.1. With the hypotheses and notations of Proposition 2.1, for P an arbitrary skew hermitian matrix we obtain for suitable scalars C_1 and C_2

$$\Re\left(u_2 - C_1 \text{tr}((NZ) \wedge (NZ)) - C_2 \text{tr}(NZ^2)\right) = 0,$$

where $Q = APA^{-1}$ and $Z = P - Q$.

Proof. We have that (2.1) has a double root ρ and hence ρ is a real. In particular, $\rho \neq \kappa^{-1}$. We have

$$X = \rho I + N, \quad N^2 = 0.$$

We find that $(I - \kappa X)^{-1} = (1 - \kappa \rho)^{-1} I + \kappa(1 - \kappa \rho)^{-2} N$ and $\kappa X(I - \kappa X)^{-1} = (I - \kappa X)^{-1} - I = \kappa(1 - \kappa \rho)^{-1} I + \kappa(1 - \kappa \rho)^{-2} N$. So the first part of the second order term involves

$$\text{tr}((I - \kappa X)^{-1} Z) \text{tr}(\kappa X(I - \kappa X)^{-1} Z) = \text{tr}(((1 - \kappa \rho)^{-1} I + \kappa(1 - \kappa \rho)^{-2} N)Z((\kappa(1 - \kappa \rho)^{-1} I + \kappa(1 - \kappa \rho)^{-2} N)Z) = \kappa^2(1 - \kappa \rho)^{-4} \left(\text{tr}(NZ) \right)^2$$

since $\text{tr}(Z) = 0$. The second part of the second order term involves

$$\kappa \text{tr}((I - \kappa X)^{-1} Z X(I - \kappa X)^{-1} Z) = \kappa \text{tr}(((1 - \kappa \rho)^{-1} I + \kappa(1 - \kappa \rho)^{-2} N)Z(\rho(1 - \kappa \rho)^{-1} I + (1 - \kappa \rho)^{-2} N)Z) = \kappa \rho(1 - \kappa \rho)^{-2} \text{tr}(Z^2) + \kappa(1 + \kappa \rho)(1 - \kappa \rho)^{-3} \text{tr}(NZ^2) + \kappa^2(1 - \rho)^{-4} \text{tr}(NZNZ).$$

Now $Z^2 = (P - APA^{-1})^2 = P^2 - PAPA^{-1} - APA^{-1} P + AP^2 A^{-1}$ clearly has a real trace. On the other hand, we have analogous to (3.2)

$$\lambda \kappa^{-2}(1 - \kappa \rho)^2 = (\kappa^{-2} - 1) \bar{\omega}$$

so that

$$\kappa \rho(1 - \kappa \rho)^{-2} = \frac{\lambda \omega}{\kappa - \rho}$$

and it follows that $\kappa \rho(1 - \kappa \rho)^{-2}$ and $\kappa \rho(1 - \kappa \rho)^{-2} \text{tr}(Z^2)$ are tangentially aligned. \[\square\]

5. The Second Order Term — Conclusion. Surprisingly, case 2 is the easiest of the three cases to settle.

Proposition 5.1. Assume that we are in case 2 arising in the proof of Proposition 3.1. It is possible to choose a skew hermitian matrix P such that $E_1Z E_1$ and $E_2 Z E_2$ are simultaneously rank one and $\text{tr}(E_1 Z) = - \text{tr}(E_2 Z) \neq 0$. Consequently, the entire second order term is tangential and the underlying extreme point is flat.
Proof. We have $E_j^* = A^{-1}E_j A$ and we simply set $P = i\xi \otimes \xi^*$ where say $\xi \in E_1$ is a nonzero vector. We note that $E_jZ E_j = E_j[P, A]E_j^* A^{-1}$, so it will suffice to show that $E_j[P, A]E_j^*$ is rank one and that $\text{tr}(E_j[P, A]E_j^* A^{-1}) \neq 0$. We obtain

$$[P, A] = i\left(\xi \otimes (A\xi)^* - (A\xi) \otimes \xi^*\right)$$

so that

$$E_1[P, A]E_1^* = i\xi \otimes (E_2 A\xi)^*$$

and $E_2[P, A]E_1^* = -i(E_2 A\xi) \otimes \xi^*$

both of which are rank one. Furthermore,

$$\text{tr}(E_1[P, A]E_1^* A^{-1}) = i\xi^* A E_2^* A^{-1} \xi = i\xi^* E_1 \xi = i\|\xi\|^2 \neq 0$$

$$\text{tr}(E_2[P, A]E_1^* A^{-1}) = -i\xi^* A^{-1} E_2 A\xi = -i\xi^* E_1 \xi = -i\|\xi\|^2 \neq 0.$$

These terms are easily seen to be equal and opposite in any case. We have

$$\text{tr}\left((E_j Z) \wedge (E_j Z) \right) = \text{tr}\left((E_j \wedge E_j)(Z \wedge Z) \right) = \text{tr}\left((E_j Z E_j) \wedge (E_j Z E_j) \right) = 0,$$

since $(E_j \wedge E_j)^2 = (E_j \wedge E_j)$. It follows from Proposition 3.1 that $\bar{\mathcal{M}} u_2 = 0$.

Lemma 5.2. Let $\alpha_1, \ldots, \alpha_n$ be distinct non-zero complex numbers such that $\alpha_j + \alpha_k \neq 0$ for all j, k. Let β_1, \ldots, β_n be complex numbers. Suppose that

$$\sum_{j=1}^{n} \alpha_j^m = \sum_{j=1}^{n} \beta_j^m \text{ for } m = 1, 3, 5, \ldots.$$

Then there exists $\sigma \in S_n$ such that $\beta_j = \alpha_{\sigma(j)}$ for $j = 1, \ldots, n$.

Sketch of proof.

The hypotheses can be used to show that

$$(5.1) \quad \prod_{j=1}^{n} \frac{1 + \alpha_j z}{1 - \alpha_j z} = \prod_{j=1}^{n} \frac{1 + \beta_j z}{1 - \beta_j z}$$

for all complex z. To prove this, take logarithms for $|z|$ small and expand as a power series in z. Since

$$\ln \left(\frac{1 + z}{1 - z} \right) = 2 \sum_{m=1}^{\infty} \frac{z^m}{m}$$

we have

$$\sum_{j=1}^{n} \ln \left(\frac{1 + \alpha_j z}{1 - \alpha_j z} \right) = 2 \sum_{m=1}^{\infty} \frac{\sum_{j=1}^{n} \alpha_j^m}{m} \frac{z^m}{m}$$

$$= 2 \sum_{m=1}^{\infty} \frac{\sum_{j=1}^{n} \beta_j^m}{m} \frac{z^m}{m} = \sum_{j=1}^{n} \ln \left(\frac{1 + \beta_j z}{1 - \beta_j z} \right).$$
Analytic continuation then shows that the two functions in (5.1) agree as rational functions. Since the hypotheses imply that cancelation on the left in (5.1) is impossible and since the left hand side has a full complement of \(n\) distinct poles, matching poles on the right gives the result.

Proposition 5.3. Assume that we are in case 1 arising in the proof of Proposition 3.1. It is possible to choose a skew hermitian matrix \(P\) such that \(E_1ZE_1\) and \(E_2ZE_2\) are simultaneously both of rank one and such that \(\text{tr}(E_1Z) = -\text{tr}(E_2Z) \neq 0\). Consequently, the entire second order term is tangential and the underlying extreme point is flat.

Proof. We again take \(P = i\xi \otimes \xi^*\) and obtain
\[
E_jZE_j = iE_j\xi \otimes \xi^*E_j - iE_jA\xi \otimes \xi^*A^{-1}E_j.
\]

To make this of rank one, we choose \(\xi\) to satisfy \((A - \alpha_1E_1 - \alpha_2E_2)\xi = 0\) on the assumption that \(\alpha_j\) \((j = 1, 2)\) are nonzero complex numbers such that \(A - \alpha_1E_1 - \alpha_2E_2\) is singular. It follows that \(E_jA\xi = \alpha_jE_j\xi\) forcing \(E_jZE_j\) to be rank one for both \(j = 1, 2\). Our result will follow unless \(\text{tr}(E_jZ) = 0\) for all such \(\xi\). Now we have
\[
\text{tr}(E_jZ) = \text{tr}(E_jZE_j)
= i\left(\xi^*E_j\xi - \xi^*A^{-1}E_jA\xi\right)
= i\left(\xi^*E_j\xi - \alpha_j\xi^*A^{-1}E_j\xi\right)
= i\left(\xi^*E_j\xi - \alpha_j\xi^*E_j^*A^{-1}\xi\right)
= i\left(\xi^*E_j\xi - \frac{\alpha_1}{\alpha_2}\xi^*AE_j^*A^{-1}\xi\right)
= i\left(1 - \frac{\alpha_2}{\alpha_1}\right)\xi^*E_j\xi.
\]

This last quantity must vanish for both \(j = 1\) and \(j = 2\) since \(\text{tr}(E_1Z) + \text{tr}(E_2Z) = \text{tr}(Z) = 0\). But \(\xi^*E_1\xi + \xi^*E_2\xi = ||\xi||^2 \neq 0\). It follows that either \(1 - \frac{\alpha_2}{\alpha_1} = 0\) or \(1 - \frac{\alpha_1}{\alpha_2} = 0\). In other words, either \(\alpha_1\) or \(\alpha_2\) is real. To finish the proof, let \(m \geq 3\) be an odd integer, \(t > 0\) and consider the characteristic roots \(\nu\) of \((E_1 + t\nu E_2)A = (E_1 + t^{-1}z^{-1}E_2)^{-1}A\) where \(z\) is a primitive \(m\)th root of unity. For each such \(\nu\), \(A - \nu E_1 - t^{-1}z^{-1}\nu E_2\) is singular. It follows that each such characteristic root \(\nu\) is either real or a real multiple of \(z\). Consequently \(((E_1 + tE_2)A)^m\) has only real characteristic roots and indeed \(\text{tr}\left(((E_1 + tE_2)A)^m\right)\) is real. Let \(k\) be an integer with \(0 < k < m\). Since \(\text{tr}\left(((E_1 + tE_2)A)^m\right)\) is a polynomial in the positive variable \(t\), the coefficient of \(t^k\) in this expression will also be real. This means that \(z^k\text{tr}(W_k)\) is real where \(W_k\) is the coefficient of \(t^k\) in \(((E_1 + tE_2)A)^m\). By working with two different primitive \(m\)th roots \(z_1\) and \(z_2\) such that \(z_1^kz_2^{-k}\) is not real (possible since \(m \geq 3\) is odd) we see that \(\text{tr}(W_k) = 0\) for \(k = 1, 2, \ldots, m - 1\). Therefore we deduce
that \(\text{tr} \left((z_1 E_1 + z_2 E_2) A^m \right) = z_1^m \text{tr}((E_1 A)^m) + z_2^m \text{tr}((E_2 A)^m) \) for \(m \) an odd integer \(m \geq 1 \).

Observe that if \(n_j = \text{dim}(V_j) = \text{rank}(E_j) \), then \(n = n_1 + n_2 \) and \(E_j A \) has exactly \(n_j \) non-zero characteristic roots (counted according to multiplicity). It cannot have fewer since \(n = \text{rank}(A) \leq \text{rank}(E_1 A) + \text{rank}(E_2 A) \). Taking \(z_1 = z_2 = 1 \) and applying Lemma 5.2, we see that the non-zero characteristic roots of \(E_1 A \) and of \(E_2 A \) make up the eigenvalues of \(A \). But, recalling that \(B = (\kappa \rho_1 E_1 + \kappa \rho_2 E_2) A \), we see also that \(\text{tr}(B^m) = (\kappa \rho_1)^m \text{tr}((E_1 A)^m) + (\kappa \rho_2)^m \text{tr}((E_2 A)^m) \) for \(m \) odd \(m \geq 1 \). Applying Lemma 5.2 again, allows the \(b_j \) to be identified. It follows that the eigenvalues \(b_j \) of \(B \) have the form \(\kappa \rho_{\tau(j)} a_{\sigma(j)} \) where \(\tau : \{1, 2, \ldots, n\} \rightarrow \{1, 2\} \) takes the value \(n_1 \) times and the value \(n_2 \) times and \(\sigma \in S_n \). But for \(n \geq 3 \) this contradicts our hypothesis that the quantities \(b_j a_k^{-1} \) are all distinct.

Proposition 5.4. Assume that we are in case 3. It is possible to choose a skew hermitian matrix \(P \) such that \(NZ \) has rank one, \(\text{tr}(NZ^2) = 0 \) and such that \(\text{tr}(NZ) \neq 0 \). Consequently, the entire second order term is tangential and the underlying extreme point is flat.

Proof. First we need to find \(N^* \). Since \(X = \rho I + N \) and \(\rho \) is real, we have that \(N^* = A^{-1} NA \). Now suppose that \(\alpha \) and \(\beta \) are such that \(A - \alpha I - \beta N \) is a singular matrix and suppose that \(\xi \) is a vector such that \(A_\xi = \alpha \xi + \beta N \xi \). We take \(P = i \xi \otimes \xi^* \).

We obtain,

\[
Z = i(\xi \otimes \xi^* - \alpha \xi \otimes \xi^* A^{-1})
= i(\xi \otimes \xi^* - \alpha \xi \otimes \xi^* A^{-1} - \beta N \xi \otimes \xi^* A^{-1})
= iN \xi \otimes (\xi^* - \alpha \xi^* A^{-1})
\]

since \(N^2 = 0 \). So \(NZ \) has rank one. Furthermore

\[
NZ^2 = -N \xi \otimes \xi^*(I - \alpha A^{-1})(\xi \otimes \xi^* - \alpha \xi \otimes \xi^* A^{-1})
\]

\[
\text{tr}(NZ^2) = -(\xi^* N \xi)(\xi^*(I - \alpha A^{-1})\xi) + (\xi^* A^{-1} N \xi)(\xi^*(I - \alpha A^{-1}) A \xi)
= -(\xi^* N \xi)(\xi^*(I - \alpha A^{-1})\xi) + (\xi^* A^{-1} N \xi)(\xi^*(I - \alpha A^{-1}) A \xi)
= -(\xi^* N \xi)(\xi^*(I - \alpha A^{-1})\xi) + (\xi^* A^{-1} N \xi)(\xi^* A^{-1} A \xi)
= (\xi^* N \xi)(\xi^*(I - \alpha A^{-1}) A \xi)
= (\xi^* N \xi)(\xi^*(A^{-1} A \xi) - I + \alpha A^{-1}) = 0.
\]

So our result will follow unless \(\text{tr}(NZ) = 0 \) in all these situations. We note that

\[
\text{tr}(NZ) = i\xi^*(I - \alpha A^{-1}) N \xi
= i\xi^*(A^{-1} A \xi) - I + \alpha A^{-1} N \xi
= i(A^{-1} A \xi) - I + \alpha A^{-1} N \xi
= i(\alpha - \alpha) \xi^* A^{-1} N \xi
\]

since \(N^* A^{-1} N = A^{-1} N A A^{-1} N = A^{-1} N^2 = 0 \). We claim that \(\alpha \) is real. If not then \(\xi^* A^{-1} N \xi = 0 \). So \(0 = \xi^* A^{-1} \beta N \xi = \xi^* A^{-1}(A - \alpha I) \xi \) or \(||\xi||^2 = \alpha \xi^* A^{-1} \xi \) and it follows that \(\alpha \) is real after all.
Now consider the characteristic roots of \((I+zN)A\) where \(z\) is an arbitrary complex number. If \(\nu\) is a characteristic root, then there exists a vector \(\xi\) such that \((I+zN)\xi = \nu\xi\) or \(A\xi = \nu(I-zN)\xi\). It follows that \(\nu\) is real. Therefore, for every integer \(m\), and every complex \(z\), \(\text{tr}(I+zN)A^m\) is real. It follows that \(\text{tr}(I+zN)A^m = \text{tr}(A^m)\) for \(m = 0, 1, 2, \ldots\). Applying Lemma 5.2 we deduce that \((I+zN)A\) has precisely the same characteristic roots as \(A\). But \(BA^{-1} = \kappa X = \kappa \rho I + \kappa N\) and \(\rho \neq 0\) since \(B\) is non-singular. Choosing \(z = \rho^{-1}\), we find that the eigenvalues of \(B\) are proportional to those of \(A\). But this eventuality is not allowed by our hypotheses.

6. Final Steps. Proof of Theorem 1.2. We prove the result by strong induction on \(n\). For \(n = 1\) and \(n = 2\) the result is easy to verify by direct calculation.

Let \(n \geq 3\). We suppose that \(a_1, \ldots, a_n\) and \(c_1, \ldots, c_n\) are real and that \(b_j = \kappa a_j\) for some fixed \(\kappa \in \mathbb{C} \setminus \mathbb{R}\) with \(|\kappa| = 1\). We consider Conjecture 1.1 in this case. It is clear that OMC is stable under perturbations. Explicitly, this means that if OMC holds for \(a_1^{(k)}, a_2^{(k)}, \ldots, b_n^{(k)}\) for every \(k = 1, 2, \ldots\) and if \(\lim_{k \to \infty} a_j^{(k)} = a_j\) and \(\lim_{k \to \infty} b_j^{(k)} = b_j\) for \(j = 1, 2, \ldots, n\) then it also holds for \(a_1, a_2, \ldots, b_n\). It therefore suffices to establish our conjectures for generic sets of eigenvalues as described in Proposition 2.1.

Now suppose that \(\Delta \not\subseteq \Delta_0\). Then it follows from Lemma 1.4 that there is an extreme point \(z\) of \(\text{co}(\Delta)\) which is not almost flat and such that \(z \notin \Delta_0\). We can assert that \(z \neq 0\) since OMC is known in this case [3]. Let \(A\) and \(B\) be the corresponding matrices. Applying Propositions 2.1, 3.1 and 4.1, we can conclude that \(A\) and \(B\) possess a common nontrivial invariant linear subspace. The orthogonal complement is also simultaneously invariant. The fact that the eigenvalue sets consist of distinct elements allows the matrices (or rather the corresponding operators) to be decomposed simultaneously on spaces of lower dimension. This allows a contradiction to be established from the strong induction hypothesis. Hence \(\Delta \subseteq \Delta_0\) as required.

Acknowledgments The author wishes to thank NSERC for financial support (Grant RGPIN 8548-06) and the referees for helpful comments.

REFERENCES
