2008

A note on the largest eigenvalue of non-regular graphs

Bolian Liu
liubl@scnu.edu.cn

Gang Li
A NOTE ON THE LARGEST EIGENVALUE OF NON-REGULAR GRAPHS

BOLIAN LIU† AND GANG LI†

Abstract. The spectral radius of connected non-regular graphs is considered. Let λ_1 be the largest eigenvalue of the adjacency matrix of a graph G on n vertices with maximum degree Δ. By studying the λ_1-extremal graphs, it is proved that if G is non-regular and connected, then $\Delta - \lambda_1 > \frac{\Delta + 1}{n(3n + \Delta - 8)}$. This improves the recent results by B.L. Liu et al.

AMS subject classifications. 05C50, 15A48.

Key words. Spectral radius, Non-regular graph, λ_1-extremal graph, Maximum degree.

1. Introduction. Let $G = (V, E)$ be a simple graph on vertex set V and edge set E, where $|V| = n$. The eigenvalues of the adjacency matrix of G are called the eigenvalues of G. The largest eigenvalue of G, denoted by $\lambda_1(G)$, is called the spectral radius of G. Let D denote the diameter of G. We suppose throughout the paper that G is a simple graph. For any vertex u, let $\Gamma(u)$ be the set of all neighbors of u and $d(u) = |\Gamma(u)|$ be the degree of u. A nonincreasing sequence $\pi = (d_1, d_2, ..., d_n)$ of non-negative integers is called (connected) graphic if there exits a (connected) simple graph on n vertices, for which $d_1, d_2, ..., d_n$ are the degrees of its vertices. Let Δ and δ be the maximum and minimum degree of vertices of G, respectively. A graph is called regular if $d(u) = \Delta$ for any $u \in V$. It is easy to see that the spectral radius of a regular graph is Δ with $(1, 1, ..., 1)^T$ as a corresponding eigenvector. We will use $G - e$ ($G + e$) to denote the graph obtained from G by deleting (adding) the edge e. For other notations in graph theory, we follow from [2].

Stevanović [8] first found a lower bound of $\Delta - \lambda_1$ for the connected non-regular graphs. Then the results from [8] were improved in [9, 4, 7, 3]. In [4, 7], the authors showed that

$$\Delta - \lambda_1 \geq \frac{1}{n(D + 1)} \quad ([4, 7])$$

*Received by the editors November 21, 2007. Accepted for publication February 15, 2008. Handling Editor: Stephen J. Kirkland.
†School of Mathematics Sciences, South China Normal University, Guangzhou, 510631, P.R. China (liubl@scnu.edu.cn, tepal.li@sohu.com). This work was supported by the National Natural Science Foundation of China (No.10771080) and by DF of the Ministry of Education of China (No.20070574006).
and

\[D \leq \frac{3n + \Delta - 5}{\Delta + 1} \] \hspace{1cm} (1.2)

B.L. Liu et al. obtained

\[\Delta - \lambda_1 \geq \frac{\Delta + 1}{n(3n + 2\Delta - 4)} \] \hspace{1cm} (1.3)

Recently, S.M. Cioabă [3] improved (1.1) as follows:

\[\Delta - \lambda_1 > \frac{1}{nD} \] \hspace{1cm} (1.4)

Thus combining (1.2) and (1.4), the inequality (1.3) can be improved as follows:

\[\Delta - \lambda_1 > \frac{\Delta + 1}{n(3n + \Delta - 5)} \] \hspace{1cm} (1.5)

In this note we improve the inequality (1.2) on \(\lambda_1 \)-extremal graphs. Furthermore, we obtain the following inequality which improves (1.5).

\[\Delta - \lambda_1 > \frac{\Delta + 1}{n(3n + \Delta - 8)} \]

2. Preparation. Firstly, we state a well-known result which is just Frobenius’s theorem applied to graphs.

Lemma 2.1. Let \(G \) be a connected graph and \(\lambda_1 (G) \) be its spectral radius. Then \(\lambda_1 (G+uv) > \lambda_1 (G) \) for any \(uv \notin E \).

Definition 2.2. [7] Let \(G \) be a connected non-regular graph. Then the graph \(G \) is called \(\lambda_1 \)-extremal if \(\lambda_1 (G) \geq \lambda_1 (G') \) for any other connected non-regular graph \(G' \) with the same number of vertices and maximum degree as \(G \).

Theorem 2.3. Let \(G \) be a \(\lambda_1 \)-extremal graph on \(n \) vertices with maximum degree \(\Delta \). Define

\[V_{<\Delta} = \{ u : u \in V \text{ and } d(u) < \Delta \}. \]

Then \(G \) must have one of the following properties:

1. \(|V_{<\Delta}| \geq 2 \) and \(V_{<\Delta} \) induces a complete graph.
2. \(|V_{<\Delta}| = 1 \).
3. \(V_{<\Delta} = \{ u, v \}, uv \notin E(G) \) and \(d(u) = d(v) = \Delta - 1 \).

Proof. By contradiction, suppose that \(G \) is a \(\lambda_1 \)-extremal graph without properties (1), (2) and (3). It follows that \(|V_{<\Delta}| \geq 2 \). Then there are two cases.
Case 1: $V_{<\Delta} = \{u, v\}$, $uv \notin E(G)$, $d(u) < \Delta - 1$ and $d(v) \leq \Delta - 1$. Then the graph $G + uv$ has the same maximum degree as G. By Lemma 2.1, we obtain $\lambda_1(G + uv) > \lambda_1(G)$, contradicting the choice of G.

Case 2: $|V_{<\Delta}| > 2$ and $V_{<\Delta}$ does not induce a complete graph. Then there exist two vertices $u, v \in V_{<\Delta}$ and $uv \notin E(G)$. Similarly arguing to case 1, we obtain $\lambda_1(G + uv) > \lambda_1(G)$, contradicting the choice of G.

Combining the above two cases, the proof follows. □

Using the properties mentioned in Theorem 2.3, we give the following definition.

Definition 2.4. Let G be a connected non-regular graph on n vertices with maximum degree Δ. Then
- the graph G is called type-I if it has property (1),
- the graph G is called type-II if it has property (2),
- the graph G is called type-III if it has property (3).

Lemma 2.5. [6] Let G be a simple connected graph with n vertices, m edges and spectral radius $\lambda_1(G)$. Then
\[
\lambda_1(G) \leq \frac{\delta - 1 + \sqrt{(\delta + 1)^2 + 4(2m - \delta n)}}{2}
\]
and equality holds if and only if G is either a regular graph or a graph in which each vertex has degree either δ or $n - 1$.

We first consider the λ_1-extremal graphs with $\Delta = 2$ or $\Delta = n - 1$. When $\Delta = 2$, the λ_1-extremal graph is the path with $\lambda_1(P_n) = 2\cos(\frac{\pi}{n+1})$. When $\Delta = n - 1$, similarly arguing to Theorem 2.3, we know that the λ_1-extremal graph is $K_n - e$. By Lemma 2.5, we obtain
\[
\lambda_1(K_n - e) = \frac{n - 3 + \sqrt{(n + 1)^2 - 8}}{2}. \tag{2.1}
\]
Theorem 2.3 shows that the λ_1-extremal graphs must be type-I, type-II or type-III, but in what follows, we will prove that when $2 < \Delta < n - 1$, any type-III graph is not λ_1-extremal.

Lemma 2.6. [5] Let $\pi = (d_1, d_2, \ldots, d_n)$ be a nonincreasing sequence of non-negative integers. Then π is graphic if and only if
\[
\sum_{i=1}^{n} d_i \text{ is even and } \sum_{i=1}^{k} d_i \leq k(k - 1) + \sum_{i=k+1}^{n} \min\{k, d_i\}, \text{ for all } k = 1, 2, \ldots, n - 1. \tag{2.2}
\]

Lemma 2.7. Let $\pi = (d_1, d_2, \ldots, d_n)$ be a nonincreasing sequence of positive
Thus degree sequence \(u \) cases. Then we need only to prove that the inequality is true. We split our proof into four

Lemma 2.8. Let \(\pi = (d_1, d_2, \ldots, d_n) = (\Delta, \Delta, \ldots, \Delta, \Delta - 1, \Delta - 1) \) and \(\pi' = (d'_1, d'_2, \ldots, d'_n) = (\Delta, \Delta, \ldots, \Delta, \Delta - 2) \) with \(2 < \Delta < n - 1 \). If \(\pi \) is connected graphic, then \(\pi' \) is connected graphic.

Proof. Since \(2 < \Delta < n - 1 \), we obtain \(d'_{n-1} \geq 3 \) and \(d'_n \geq 1 \). Then by Lemma 2.7, we need only to prove that \(\pi' \) is graphic. Let \(G \) be a connected graph with the degree sequence \(\pi \). Since \(\pi \) is graphic, by Lemma 2.6, we obtain

\[
\sum_{i=1}^{n} d_i \text{ is even and } \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}, \text{ for all } k = 1, 2, \ldots, n-1.
\]

For \(\pi' \) we will prove that (2.2) is still true. Obviously, \(\sum_{i=1}^{n} d'_i = \sum_{i=1}^{n} d_i \) is even. Then we need only to prove that the inequality is true. We split our proof into four cases.

Case 1: \(1 \leq k \leq \Delta - 2 \), then \(k \leq n - 4 \) and

\[
\sum_{i=1}^{k} d'_i = \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}
\]

\[
= k(k-1) + k(n-k)
\]

\[
= k(k-1) + \sum_{i=k+1}^{n} \min\{k, d'_i\}.
\]

Case 2: \(1 < k = \Delta - 1 \), then \(k \leq n - 3 \) and

\[
k(k-1) + k(n-k) - \sum_{i=1}^{k} d_i = k(k-1) + k(n-k) - k\Delta = k(n-k-2) \geq k > 1.
\]

Thus

\[
\sum_{i=1}^{k} d'_i = \sum_{i=1}^{k} d_i < k(k-1) + k(n-k) - 1 = k(k-1) + \sum_{i=k+1}^{n} \min\{k, d'_i\}.
\]
Case 3: $\Delta \leq k \leq n - 2$, then
\[
\sum_{i=1}^{k} d'_i = \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\} \\
= k(k-1) + (n-k-2)\Delta + 2\Delta - 2 \\
= k(k-1) + \sum_{i=k+1}^{n} \min\{k, d'_i\}.
\]

Case 4: $k = n-1$, then
\[
k(k-1) + \Delta - \sum_{i=1}^{k} d_i = (n-1)(n-2) + \Delta - [(n-1)\Delta - 1] \\
= (n-2)(n-1-\Delta) + 1 \geq 4,
\]
where the last inequality holds since $2 < \Delta < n - 1$. Hence
\[
\sum_{i=1}^{k} d'_i = \sum_{i=1}^{k} d_i + 1 < k(k+1) + \Delta - 2 \\
= k(k-1) + \sum_{i=k+1}^{n} \min\{k, d'_i\}.
\]

Combining the above four cases, the inequality is true. Then by Lemma 2.6, the π' is graphic. This completes the proof. \(\square\)

As we know, majorization on degree sequences is defined as follows: for two sequences $\pi = (d_1, d_2, \ldots, d_n)$, $\pi' = (d'_1, d'_2, \ldots, d'_n)$ we write $\pi \leq \pi'$ if and only if $\sum_{i=1}^{n} d_i = \sum_{i=1}^{n} d'_i$ and $\sum_{i=1}^{j} d_i \leq \sum_{i=1}^{j} d'_i$ for all $j = 1, 2, \ldots, n$. We claim that G has the greatest maximum eigenvalue if $\lambda_1(G) \geq \lambda_1(G')$ for any other graph G' in the class C_π, where $C_\pi = \{G : G$ is a connected graph with the degree sequence $\pi\}$.

Lemma 2.9. [1] Let π and π' be two distinct degree sequences with $\pi \leq \pi'$. Let G and G' be graphs with the greatest maximum eigenvalues in classes C_π and $C_{\pi'}$, respectively. Then $\lambda_1(G) < \lambda_1(G')$.

Theorem 2.10. Let G be a connected graph with degree sequence
\[
\pi = (\Delta, \Delta, \ldots, \Delta, \Delta - 1, \Delta - 1)
\]
and $2 < \Delta < n - 1$. Then there exists a connected graph G' with degree sequence $\pi' = (\Delta, \Delta, \ldots, \Delta, \Delta - 2)$ such that $\lambda_1(G) < \lambda_1(G')$.

Proof. By Lemma 2.8, there exists a connected graph G' with degree sequence $\pi' = (\Delta, \Delta, \ldots, \Delta, \Delta - 2)$. We suppose that G (G') is the graph with the greatest
maximum eigenvalue in $C_\pi (C_{\pi'})$. It is obvious that $\pi \subseteq \pi'$. By Lemma 2.9, we obtain $\lambda_1(G) < \lambda_1(G')$. \[\Box \]

Theorem 2.11. Let G be a λ_1-extremal graph on n vertices with the maximum degree Δ and $2 < \Delta < n - 1$. Then G must be either type-I or type-II.

Proof. Suppose that G is a type-III graph with the greatest maximum eigenvalue in class C_π, where $\pi = (\Delta, \Delta, ..., \Delta, \Delta - 1, \Delta - 1)$. By Theorem 2.10, there exists a graph G' with degree sequence $\pi' = (\Delta, \Delta, ..., \Delta, \Delta - 2)$ and greatest maximum eigenvalue in class $C_{\pi'}$ such that $\lambda_1(G') > \lambda_1(G)$. It follows that G is not λ_1-extremal. \[\Box \]

Remark. Although Theorem 2.11 shows that the λ_1-extremal graph with $2 < \Delta < n - 1$ must be type-I or type-II, there exist some graphs with property (1) or (2) which are not λ_1-extremal. Let G_1, G_2 be connected graphs with degree sequences $(3, 3, 3, 3, 2, 2)$, $(5, 5, 5, 5, 5, 5, 2)$, respectively. Clearly G_1 (G_2) is a type-I (type-II) graph. However, by checking the Table 1 of [7], we know they are not the λ_1-extremal graphs. After some computer experiments, we give a conjecture about the λ_1-extremal graphs as follows:

Conjecture 2.12. Let G be a connected non-regular graph on n vertices and $2 < \Delta < n - 1$. Then G is λ_1-extremal if and only if G is a graph with the greatest maximum eigenvalue in classes C_π and $\pi = (\Delta, \Delta, ..., \Delta, \delta)$, where

$$
\delta = \begin{cases}
(\Delta - 1), & \text{when } n\Delta \text{ is odd}, \\
(\Delta - 2), & \text{when } n\Delta \text{ is even}.
\end{cases}
$$

3. Main Results.

Theorem 3.1. Let G be a type-I or type-II graph on n vertices with diameter D. Then

$$D \leq \frac{3n + \Delta - 8}{\Delta + 1}. \quad (3.1)$$

Proof. Since G is a type-I or type-II graph, we have $\Delta \geq 3$. Let u, v be two vertices at distance D and $P : u = u_0 \leftrightarrow u_1 \leftrightarrow ... \leftrightarrow u_D = v$ be the shortest path connecting u and v. We first claim that $|V_{\Delta} \cap V(P)| \leq 2$. Otherwise, G must be a type-I graph and suppose $\{u_p, u_q, u_r\} \subseteq V(P) \cap V_{\Delta}$ with $p < q < r$. Then by definition of type-I graph, we obtain that $u_p u_q$, $u_q u_r$ and $u_p u_r \in E(G)$. Therefore, P is not the shortest path connecting u and v, a contradiction.

Then there are two cases.

Case 1: $V_{\Delta} \cap V(P) = \emptyset$. Define $T = \{i : i \equiv 0 \text{ mod } 3 \text{ and } i \leq (D - 3)\} \cup \{D\}$. Thus $|T| = \left\lceil \frac{D + 1}{3} \right\rceil$. Let $d(u_i, u_j)$ denote the distance between u_i and u_j. Since P is
the shortest path connecting \(u \) and \(v \), we have \(d(u_i, u_j) \geq 3 \) and \(\Gamma(u_i) \cap \Gamma(u_j) = \emptyset \) for any distinct \(i, j \in T \). Notice that \(u_i \in V(P) \) for any \(i \in T \). We obtain

\[
|\Gamma(u_i) - V(P)| = \begin{cases}
\Delta - 1, & \text{if } i \in \{0, D\}, \\
\Delta - 2, & \text{otherwise}.
\end{cases}
\]

Then

\[
n \geq |V(P)| + \sum_{i \in T} |\Gamma(u_i) - V(P)| \\
\geq D + 1 + (|T| - 2)(\Delta - 2) + 2(\Delta - 1) \\
\geq D + 1 + \left(\frac{D + 1}{3} - 2\right)(\Delta - 2) + 2(\Delta - 1).
\]

Thus

\[
D \leq \frac{3n - \Delta - 7}{\Delta + 1}.
\]

Case 2: Either \(V_{<\Delta} \cap V(P) = \{u_p, u_q\} \) with \(q = p + 1 \) or \(V_{<\Delta} \cap V(P) = \{u_p\} \). The proof is similar to the proof of [7]. We obtain the same result

\[
D \leq \frac{3n + \Delta - 8}{\Delta + 1}.
\]

Combining the above two cases, the proof follows. \(\square\)

Lemma 3.2. [3] Let \(G \) be a connected non-regular graph on \(n \) vertices with maximum degree \(\Delta \) and diameter \(D \). Then

\[
\Delta - \lambda_1 > \frac{1}{nD}.
\]

Theorem 3.3. Let \(G \) be a connected non-regular graph on \(n \) vertices with maximum degree \(\Delta \). Then

\[
\Delta - \lambda_1 > \frac{\Delta + 1}{n(3n + \Delta - 8)}.
\]

Proof. Without loss of generality, we suppose that \(G \) is a \(\lambda_1 \)-extremal graph. Since \(G \) is connected and non-regular, then \(n \geq 3 \) and \(\Delta \geq 2 \). When \(\Delta = n - 1 \) and \(n \geq 5 \), the \(\lambda_1 \)-extremal graph is \(K_n - e \) with \(D = 2 \). Then by Lemma 3.2, we obtain

\[
\lambda_1(K_n - e) < \Delta - \frac{1}{2n} < \Delta - \frac{\Delta + 1}{n(3n + \Delta - 8)}.
\]
When $\Delta = n - 1$ and $n = 3$, the λ_1-extremal graph is P_3 with $\lambda_1(P_3) = 1.4142$. When $\Delta = n - 1$ and $n = 4$, the λ_1-extremal graph is $K_4 - e$ with $\lambda_1(K_4 - e) = 2.5616$. By direct calculation, we know that the inequality is true. When $2 < \Delta < n - 1$, applying Theorem 3.1 and Lemma 3.2, we obtain the result. When $\Delta = 2$ and $n > 3$, the λ_1-extremal graph is P_n. By adding some edges to P_n, we can attain $K_n - e$. Then following the Lemma 2.1, we obtain $\lambda_1(P_n) < \lambda_1(K_n - e)$. This completes the proof. □

Acknowledgement. The authors would like to thank an anonymous referee for valuable comments and suggestions that improved our presentation.

REFERENCES