2008

On a new class of structured matrices related to the discrete skew-self-adjoint Dirac systems

Bernd Fritzsche
Bernd Kirstein
Alexander L. Sakhnovich
oleksandr.sakhnovych@univie.ac.at

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1277

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
ON A NEW CLASS OF STRUCTURED MATRICES RELATED TO THE DISCRETE SKEW-SELF-ADJOINT DIRAC SYSTEMS

B. FRITZSCHE†, B. KIRSTEIN†, AND A.L. SAKHNOVICH‡

Abstract. A new class of the structured matrices related to the discrete skew-self-adjoint Dirac systems is introduced. The corresponding matrix identities and inversion procedure are treated. Analogs of the Schur coefficients and of the Christoffel-Darboux formula are studied. It is shown that the structured matrices from this class are always positive-definite, and applications for an inverse problem for the discrete skew-self-adjoint Dirac system are obtained.

Key words. Structured matrices, Matrix identity, Schur coefficients, Christoffel-Darboux formula, Transfer matrix function, Discrete skew-self-adjoint Dirac system, Weyl function, Inverse problem.

AMS subject classifications. 15A09, 15A24, 39A12.

1. Introduction. It is well-known that Toeplitz and block Toeplitz matrices are closely related to a discrete system of equations, namely to Szegö recurrence. This connection have been actively studied during the last decades. See, for instance, [1]–[5], [12, 25] and numerous references therein. The connections between block Toeplitz matrices and Weyl theory for the self-adjoint discrete Dirac system were treated in [11]. (See [26] for the Weyl theory of the discrete analog of the Schrödinger equation.) The Weyl theory for the skew-self-adjoint discrete Dirac system

\[W_{k+1}(λ) - W_k(λ) = -\frac{i}{λ} C_k W_k(λ), \quad C_k = C_k^∗ = C_k^{-1}, \quad k = 0, 1, \ldots \]

was developed in [14, 18]. Here \(C_k \) are \(2p \times 2p \) matrix functions. When \(p = 1 \), system (1.1) is an auxiliary linear system for the isotropic Heisenberg magnet model. Explicit solutions of the inverse problem were constructed in [14]. A general procedure to construct the solutions of the inverse problem for system (1.1) was given in [18], using a new class of structured matrices \(S \), which satisfy the matrix identity

\[AS - SA^∗ = iΠΠ^∗. \]
Here, \(S \) and \(A \) are \((n + 1)p \times (n + 1)p\) matrices and \(\Pi \) is an \((n + 1)p \times 2p\) matrix. The block matrix \(A \) has the form

\[
(1.3) \quad A := A(n) = \left\{ a_{j-k} \right\}_{k,j=0}^n, \quad a_r = \begin{cases} 0 & \text{for } r > 0 \\ \frac{i}{2} I_p & \text{for } r = 0 \\ \frac{i}{2} I_p & \text{for } r < 0 \end{cases},
\]

where \(I_p \) is the \(p \times p \) identity matrix. The matrix \(\Pi = [\Phi_1 \Phi_2] \) consists of two block columns of the form

\[
(1.4) \quad \Phi_1 = \begin{bmatrix} I_p \\ I_p \\ \vdots \\ I_p \end{bmatrix}, \quad \Phi_2 = \begin{bmatrix} \alpha_0 \\ \alpha_0 + \alpha_1 \\ \vdots \\ \alpha_0 + \alpha_1 + \cdots + \alpha_n \end{bmatrix}.
\]

Definition 1.1. The class of the block matrices \(S \) determined by the matrix identity (1.2) and formulas (1.3) and (1.4) is denoted by \(\Omega_n \).

Notice that the blocks \(\alpha_k \) in [18] are Taylor coefficients of the Weyl functions and that the matrices \(C_n \) \((0 \leq n \leq l)\) in (1.1) are easily recovered from the expressions \(\Pi(n)^* S(n)^{-1} \Pi(n) \) \((0 \leq n \leq l)\) (see Theorem 3.4 of [18]). In this way, the structure of the matrices \(S \) determined by the matrix identity (1.2) and formulas (1.3) and (1.4), their inversion and conditions of invertibility prove essential. Recall that the self-adjoint block Toeplitz matrices satisfy [15]–[17] the identity \(AS - SA^* = i\Pi J \Pi^* \) \((J = \begin{bmatrix} 0 & I_p \\ I_p & 0 \end{bmatrix})\), which is close to (1.2)–(1.4). We refer also to [20]–[24] and references therein for the general method of the operator identities. The analogs of various results on the Toeplitz matrices and \(j \)-theory from [6]–[11] can be obtained for the class \(\Omega_n \), too.

2. Structure of the matrices from \(\Omega_n \). Consider first the block matrix \(S = \left\{ s_{kj} \right\}_{k,j=0}^n \) with the \(p \times p \) entries \(s_{kj} \), which satisfies the identity

\[
(2.1) \quad AS - SA^* = iQ, \quad Q = \left\{ q_{kj} \right\}_{k,j=0}^n.
\]

One can easily see that the equality

\[
(2.2) \quad q_{kj} = s_{kj} + \sum_{r=0}^{k-1} s_{rj} + \sum_{r=0}^{j-1} s_{kr}
\]

follows from (2.1). Sometimes we add comma between the indices and write \(s_{k,j} \). Putting \(s_{-1,j} = s_{k,-1} = q_{-1,j} = q_{k,-1} = 0, \) from (2.2) we have

\[
(2.3) \quad s_{k+1,j+1} - s_{kj} = q_{kj} + q_{k+1,j+1} - q_{k+1,j} - q_{k,j+1}, \quad -1 \leq k,j \leq n - 1.
\]
Now, putting $Q = i \Pi \Pi^\ast$ and taking into account (2.3), we get the structure of S.

PROPOSITION 2.1. Let $S \in \Omega_n$. Then we have

$$s_{k+1,j+1} - s_{kj} = \alpha_{k+1} \alpha_{j+1}^\ast \quad (-1 \leq k, j \leq n - 1),$$

excluding the case when $k = -1$ and $j = -1$ simultaneously. For that case, we have

$$s_{00} = I_p + \alpha_0 \alpha_0^\ast.$$

Notice that for the block Toeplitz matrix, the equalities $s_{k+1,j+1} - s_{kj} = 0 \quad (0 \leq k, j \leq n - 1)$ hold. Therefore, Toeplitz and block Toeplitz matrices can be used to study certain homogeneous processes and appear as a result of discretization of homogeneous equations. From this point of view, the matrix $S \in \Omega_n$ is perturbed by the simplest inhomogeneity.

The authors are grateful to the referee for the next interesting remark.

REMARK 2.2. From (1.2)–(1.4) we get another useful identity, namely,

$$S - NSN^* = \hat{\Pi} \hat{\Pi}^*,$$

where

$$N = \{\delta_{k-j-1}I_p\}_{k,j=0}^n = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ I_p & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ I_p & 0 & \cdots & 0 \end{bmatrix}, \quad \hat{\Pi} = \begin{bmatrix} I_p & \alpha_0 \\ 0 & \alpha_1 \\ \vdots & \vdots \\ 0 & \alpha_n \end{bmatrix}.$$

Indeed, it is easy to see that $(I_{(n+1)p} - N)A = \frac{i}{2}(I_{(n+1)p} + N)$. Hence, the identity

$$i(S - NSN^*) = i(I_{(n+1)p} - N)\Pi \Pi^\ast (I_{(n+1)p} - N^\ast)$$

follows from (1.2). By (2.7), we have $(I_{(n+1)p} - N)\Pi = \hat{\Pi}$, and so (2.6) is valid. Relations (2.4) and (2.5) are immediate from (2.6).

PROPOSITION 2.3. Let $S = \{s_{kj}\}_{k,j=0}^n \in \Omega_n$. Then S is positive and, moreover, $S \geq I_{(n+1)p}$. We have $S > I_{(n+1)p}$ if and only if $\det \alpha_0 \neq 0$.

Proof. From (2.5) it follows that $S(0) = s_{00} \geq I_p$ and that $S(0) > I_p$, when $\det \alpha_0 \neq 0$. The necessity of $\det \alpha_0 \neq 0$, for the inequality $S > I_{(n+1)p}$ to be true, follows from (2.5), too. We shall prove that $S \geq I_{(n+1)p}$ and that $S > I_{(n+1)p}$, when $\det \alpha_0 \neq 0$, by induction.

Suppose that $S(r - 1) = \{s_{kj}\}_{k,j=0}^{r-1} \geq I_{rp} \quad (r \geq 1)$. According to (2.6), we can
present \(S(r) = \{ s_{kj} \}_{k,j=0}^r \) in the form \(S(r) = S_1 + S_2 \),

\[
S_1 := \begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\vdots \\
\alpha_r
\end{bmatrix} \begin{bmatrix}
\alpha_0^* & \alpha_1^* & \cdots & \alpha_r^*
\end{bmatrix}, \quad S_2 := \begin{bmatrix}
I_p & 0 \\
0 & S(r-1)
\end{bmatrix}.
\]

By the assumption of induction, it is immediate that \((2.8) \)

Suppose that \(\det \alpha_0 \neq 0 \) and \(S(r-1) > I_{(n+1)p} \). Let \(S(r)f = f \) \((f \in BC^{(r+1)p})\), i.e., let \(f^*(S(r) - I_{(r+1)p})f = 0 \). By \((2.8) \), we have \(S_1 \geq 0 \), and by the assumption of induction, we have \(S_1 - I_{(r+1)p} \geq 0 \). So, it follows from \(f^*(S(r) - I_{(r+1)p})f = 0 \) that \(f^*S_2f = 0 \) and \(f^*(S_2 - I_{(r+1)p})f = 0 \). Hence, as \(\alpha_0 \alpha_0^* > 0 \) and \(S(r-1) > I_{xp} \), we derive \(f = 0 \). In other words, \(S(r)f = f \) implies \(f = 0 \), that is, \(\det(S(r) - I_{(r+1)p}) \neq 0 \). From \(\det(S(r) - I_{(r+1)p}) \neq 0 \) and \(S(r) \geq I_{(r+1)p} \), we get \(S(r) > 0 \). So, the condition \(\det \alpha_0 \neq 0 \) implies \(S(n) > I_{(n+1)p} \) by induction.

Remark 2.4. Using formula \((2.5) \) and representations \(S(r) = S_1(r) + S_2(r) \) \((0 < r \leq n)\), where \(S_1(r) \) and \(S_2(r) \) are given by \((2.8) \), one easily gets

\[
S = I_{(n+1)p} + \begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix} \begin{bmatrix}
\alpha_0^* & \alpha_1^* & \cdots & \alpha_n^*
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix} \begin{bmatrix}
0 & \cdots & 0 & \alpha_0^*
\end{bmatrix} + \ldots + \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix} \begin{bmatrix}
0 & \cdots & 0 & \alpha_0^*
\end{bmatrix} = I_{(n+1)p} + V_\alpha V_\alpha^*, \quad V_\alpha := \begin{bmatrix}
\alpha_0 & 0 & \cdots & 0 \\
\alpha_1 & \alpha_0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_n & \alpha_{n-1} & \cdots & \alpha_0
\end{bmatrix}.
\]

Here, \(V_\alpha \) is a triangular block Toeplitz matrix, and formula \((2.9) \) is another way to prove Proposition 2.3. Further, we will be interested in a block triangular factorization of the matrix \(S \) itself, namely, \(S = V_\alpha^{-1}(V_\alpha^*)^{-1} \), where \(V_\alpha \) is a lower triangular matrix.

Similar to the block Toeplitz case (see [13] and references therein) the matrices \(S \in \Omega_n \) admit the matrix identity of the form \(A_1S - SA_1 = Q_1 \), where \(Q_1 \) is of low
rank, $A_1 := \{ \delta_{k-j+1} I_p \}_{k,j=0}^n = N^*$ and N is given in (2.7). The next proposition follows easily from (2.4).

Proposition 2.5. Let $S \in \Omega_n$. Then we have

\begin{equation}
A_1 S - SA_1 = y_1 y_2^* + y_3 y_4^* + y_5 y_6^*, \quad A_1^* S - S A_1^* = -(y_2 y_1^* + y_4 y_3^* + y_6 y_5^*),
\end{equation}

where

\begin{align}
y_1 &= \begin{bmatrix} s_{10} \\ s_{20} \\ \vdots \\ s_{n0} \\ 0 \end{bmatrix}, \\
y_3 &= - \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ I_p \end{bmatrix}, \\
y_5 &= \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \\ 0 \end{bmatrix}, \\
y_6 &= \begin{bmatrix} 0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix},
\end{align}

\begin{align}
y_2 &= \begin{bmatrix} I_p & 0 & 0 & \cdots & 0 \end{bmatrix}, \\
y_4 &= \begin{bmatrix} 0 & s_{n0} & s_{n1} & \cdots & s_{n,n-1} \end{bmatrix}.
\end{align}

Differently than the block Toeplitz matrix case, the rank of $A_1 S - SA_1$ is in general situation larger than the rank of $AS - SA^*$, where A is given by (1.3). (To see this compare (1.2)–(1.4) and (2.10)–(2.12).)

3. Transfer matrix function and Weyl functions. Introduce the $(r+1)p \times (n+1)p$ matrix

\begin{equation}
P_k := \begin{bmatrix} I_{(r+1)p} & 0 \end{bmatrix}, \quad r \leq n.
\end{equation}

It follows from (1.3) that $P_r A(n) = A(r) P_r$. Hence, using (1.2) we derive

\begin{equation}
A(r) S(r) - S(r) A(r)^* = i \Pi(r) \Pi(r)^*, \quad \Pi(r) := P_r \Pi.
\end{equation}

As $S > 0$, it admits a block triangular factorization

\begin{equation}
S = V_-^{-1}(V_+)^{-1},
\end{equation}

where $V_-^{\pm1}$ are block lower triangular matrices. It is immediate from (3.3) that

\begin{equation}
S(r) = V_-^{-1}(V_-(r)^*)^{-1}, \quad V_-(r) := P_r V_+ P_r^*.
\end{equation}

Recall that S-node [21, 23, 24] is the triple $(A(r), S(r), \Pi(r))$ that satisfies the matrix identity (3.2) (see also [21, 23, 24] for a more general definition of the S-node). Following [21, 23, 24], introduce the transfer matrix function corresponding to the S-node:

\begin{equation}
w_A(r, \lambda) = I_{2p} - i \Pi(r)^* S(r)^{-1} (A(r) - \lambda I_{(r+1)p})^{-1} \Pi(r).
\end{equation}
In particular, taking into account (3.4) and (3.5), we get

\[(3.6) \quad w_A(0, \lambda) = I_{2p} - \frac{2i}{i - 2\lambda} \beta(0)^* \beta(0), \quad \beta(0) = V_-(0) \Pi(0).\]

By the factorization theorem 4 from \[21\] (see also \[23, p. 188\]), we have

\[(3.7) \quad w_A(r, \lambda) = \left(I_{2p} - i \Pi(r)^* S(r)^{-1} P^*(P A(r) P^* - \lambda I_p)^{-1}(PS(r)^{-1} P^*)^{-1} \times PS(r)^{-1} \Pi(r) \right) w_A(r - 1, \lambda), \quad P = [0 \cdots 0 I_p].\]

According to (1.3), we obtain

\[(3.8) \quad (PA(r) P^* - \lambda I_p)^{-1} = \left(\frac{i}{2} - \lambda \right)^{-1} I_p.\]

Using (3.4), we derive

\[(3.9) \quad PS(r)^{-1} P^* = (V_-(r))_r^* (V_-(r))_r, \quad PS(r)^{-1} \Pi(r) = (V_-(r))_r^* PV_-(r) \Pi(r),\]

where \((V_-(r))_r\) is the block entry of \(V_-(r)\) (the entry from the \(r\)-th block row and the \(r\)-th block column). In view of (3.8) and (3.9), we rewrite (3.7) in the form

\[(3.10) \quad w_A(r, \lambda) = \left(I_{2p} - \frac{2i}{i - 2\lambda} \beta(r)^* \beta(r) \right) w_A(r - 1, \lambda),\]

\[(3.11) \quad \beta(r) = PV_-(r) \Pi(r) = (V_- \Pi)_r, \quad 0 < r \leq n.\]

Here, \((V_- \Pi)_r\) is the \(r\)-th \(p \times 2p\) block of the block column vector \(V_- \Pi\). Moreover, according to (3.9) and definitions (3.6), (3.11) of \(\beta\), we have

\[(3.12) \quad \left(PS(r)^{-1} P^* \right)^{\frac{1}{2}} PS(r)^{-1} \Pi(r) = u(r) \beta(r), \quad u(r) := \left(PS(r)^{-1} P^* \right)^{\frac{1}{2}} (V_-(r))_r^*, \quad u(r)^* u(r) = I_p.\]

As \(u\) is unitary, the properties of \(\left(PS(r)^{-1} P^* \right)^{\frac{1}{2}} PS(r)^{-1} \Pi(r)\) proved in \[18, p. 2098\] imply the next proposition.

Proposition 3.1. Let \(S \in \Omega_n\) and let \(\beta(k)\) \((0 \leq k \leq n)\) be given by (3.3), (3.4), (3.6) and (3.11). Then we have

\[(3.13) \quad \begin{cases}
\beta(k) \beta(k)^* = I_p & (0 \leq k \leq n), \\
\det \beta(k - 1) \beta(k)^* \neq 0 & (0 < k \leq n), \\
\det \beta_1(0) \neq 0,
\end{cases}\]

where \(\beta_1(k), \beta_2(k)\) are \(p \times p\) blocks of \(\beta(k)\).
Remark 3.2. Notice that the lower triangular factor V_- is not defined by S uniquely. Hence, the matrices $\beta(k)$ are not defined uniquely, too. Nevertheless, in view of (3.12), the matrices $\beta(k)^*\beta(k)$ are uniquely defined, which suffices for our considerations.

When $p = 1$ and $C_k \neq \pm I_2$, the matrices $C_k = C_k^* = C_k^{-1}$ (i.e., the potential of the system (1.1)) can be presented in the form $C_k = I_2 - 2\beta(k)^*\beta(k)$, where $\beta(k)^*\beta(k) = 1$. Therefore, it is assumed in [18] for the system (1.1) on the interval $0 \leq k \leq n$, that

$$C_k = I_{2p} - 2\beta(k)^*\beta(k),$$

where $\beta(k)$ are $p \times 2p$ matrices and (3.13) holds. Relation (3.14) implies $C_k = U_k^*U_k$, where U_k are unitary $2p \times 2p$ matrices. The equalities $C_k = C_k^* = C_k^{-1}$ follow. Consider the fundamental solution $W(r)(\lambda)$ of the system (1.1) normalized by $W_0(\lambda) = I_{2p}$. Using (3.6) and (3.10), one easily derives

$$W_{r+1}(\lambda) = \left(\frac{\lambda - i}{\lambda}\right)^{r+1} w_A \left(r, \frac{\lambda}{2} \right), \quad 0 \leq r \leq n.$$

Similar to the continuous case, the Weyl functions of the system (1.1) are defined via Möbius (linear-fractional) transformation

$$\varphi(\lambda) = \left(W_{11}(\lambda) R(\lambda) + W_{12}(\lambda) Q(\lambda) \right) \left(W_{21}(\lambda) R(\lambda) + W_{22}(\lambda) Q(\lambda) \right)^{-1},$$

where W_{ij} are $p \times p$ blocks of W and

$$W(\lambda) = \{ W_{ij}(\lambda) \}_{i,j=1}^2 := W_{n+1}(\lambda)^*.$$

Here, R and Q are any $p \times p$ matrix functions analytic in the neighborhood of $\lambda = i$ and such that

$$\det \left(W_{21}(i) R(i) + W_{22}(i) Q(i) \right) \neq 0.$$

One can easily verify that such pairs always exist (see [18, p. 2090]). A matrix function $\varphi(\lambda)$ of order p, analytic at $\lambda = i$, generates a matrix $S \in \Omega_n$ via the Taylor coefficients

$$\varphi \left(i \frac{1+z}{1-z} \right) = -(\alpha_0 + \alpha_1 z + \cdots + \alpha_n z^n) + O(z^{n+1}) \quad (z \to 0)$$

and identity (1.2). By Theorem 3.7 in [18], such φ is a Weyl function of some system (1.1) if and only if S is invertible. Now, from Proposition 2.3 it follows that $S > 0$, and the next proposition is immediate.
Proposition 3.3. Any $p \times p$ matrix function φ, which is analytic at $\lambda = \imath$, is a Weyl function of some system (1.1) on the interval $0 \leq k \leq n$, such that (3.13) and (3.14) hold.

Moreover, from the proof of the statement (ii) of Theorem 3.7 in [18], the Corollary 3.6 in [18] and our Proposition 3.3, we get:

Proposition 3.4. Let the $p \times p$ matrix function φ be analytic at $\lambda = \imath$ and admit expansion (3.19). Then φ is a Weyl function of the system (1.1) $(0 \leq k \leq n)$, where

C_k are defined by the formulas (1.2)–(1.4), $\Pi = [\varPhi_1 \; \varPhi_2]$ (3.3), (3.11) and (3.14). Moreover, any Weyl function of this system admits expansion (3.19).

4. Schur coefficients and Christoffel-Darboux formula. The sequence $\{\alpha_k\}_{k=0}^n$ uniquely determines via formulas (1.2)–(1.4) or (1.3), (1.4), (2.4) and (2.5) the S-node (A, S, Π). Then, using (3.3), (3.11) and (3.14), we uniquely recover the system (1.1) $(0 \leq k \leq n)$, or equivalently, we recover the sequence $\{\beta_k^*\beta_k\}_{k=0}^n$, such that (3.13) holds. By Proposition 3.4, one can use Weyl functions of this system to obtain the sequence $\{\alpha_k\}_{k=0}^n$.

Remark 4.1. Thus, there are one to one correspondences between the sequences $\{\alpha_k\}_{k=0}^n$, the S-nodes (A, S, Π) satisfying (1.2), the systems (1.1) $(0 \leq k \leq n)$ with C_k of the form (3.14) and the sequences $\{\beta_k^*\beta_k\}_{k=0}^n$, such that (3.13) holds.

Next, we consider a correspondence between $\{\beta_k^*\beta_k\}_{k=0}^n$ and some $p \times p$ matrices $\{\rho_k\}_{k=0}^n$ $(\|\rho_k\| \leq 1)$. Notice that $0 \leq \beta_1(k)\beta_1(k)^* \leq I_p$, and suppose that these inequalities are strict:

$$0 < \beta_1(k)\beta_1(k)^* < I_p \quad (0 \leq k \leq n).$$

In view of the first relation in (3.13) and inequalities (4.1), we have $\det \beta_1(k) \neq 0$ and $\det \beta_2(k) \neq 0$. So, we can put

$$\rho_k := \left(\beta_2(k)^*\beta_2(k)\right)^{-\frac{1}{2}}\beta_2(k)^*\beta_1(k).$$

It follows from (4.2) that

$$\rho_k^*\rho_k = \left(\beta_2(k)^*\beta_2(k)\right)^{-\frac{1}{2}}\beta_2(k)^*(I_p - \beta_2(k)\beta_2(k)^*)\beta_2(k)\left(\beta_2(k)^*\beta_2(k)\right)^{-\frac{1}{2}}$$

$$= I_p - \beta_2(k)^*\beta_2(k).$$

By (4.2) and (4.3), we obtain

$$[\rho_k \; (I_p - \rho_k\rho_k^*)^{\frac{1}{2}}] = u_k\beta(k), \quad \|\rho_k\| < 1,$$

where

$$u_k := \left(\beta_2(k)^*\beta_2(k)\right)^{-\frac{1}{2}}\beta_2(k)^*, \quad u_ku_k^* = I_p,$$
Remark 4.2. Under condition (4.1), according to (4.4) and (4.5), the sequence \(\{ \beta_k^* \beta_k \}_{k=0}^n \) is uniquely recovered from the sequence \(\{ \rho_k \}_{k=0}^n \) \((\| \rho_k \| \leq 1) \):

\[
\beta_k^* \beta_k = \left(I_p - \rho_k \rho_k^* \right)^{\frac{1}{2}} [\rho_k \ (I_p - \rho_k \rho_k^*)^{\frac{1}{2}}].
\]

By Remark 4.1 this means that the \(S \)-node can be recovered from the sequence \(\{ \rho_k \}_{k=0}^n \).

Therefore, similar to the Toeplitz case, we call \(\rho_k \) the Schur coefficients of the \(S \)-node \((A, S, \Pi) \).

Besides Schur coefficients, we obtain an analog of the Christoffel-Darboux formula.

Proposition 4.3. Let \(S \in \Omega_n \), let \(w_A(r, \lambda) \) be introduced by (3.5) for \(r \geq 0 \) and put \(w_A(-1, \lambda) = I_{2p} \). Then we have

\[
\sum_{k=-1}^{n-1} w_A(k, \mu)^* \beta(k+1)^* \beta(k+1) w_A(k, \lambda) = \frac{(2\lambda - i)(2\mu + i)}{4i(\mu - \lambda)} \left(w_A(n, \mu)^* w_A(n, \lambda) - I_{2p} \right).
\]

Proof. From (3.10) it follows that

\[
w_A(k+1, \mu)^* w_A(k+1, \lambda) - w_A(k, \mu)^* w_A(k, \lambda) = w_A(k, \mu)^* \left(\left(I_{2p} - \frac{2i}{2\mu + i} \beta(k+1)^* \beta(k+1) \right) \right.
\]

\[
\times \left(I_{2p} + \frac{2i}{2\lambda - i} \beta(k+1)^* \beta(k+1) \right) - I_{2p} \right) w_A(k, \lambda).
\]

Using \(\beta(k) \beta(k)^* = I_p \), we rewrite (4.8) in the form

\[
w_A(k+1, \mu)^* w_A(k+1, \lambda) - w_A(k, \mu)^* w_A(k, \lambda)
\]

\[
= \frac{4i(\mu - \lambda)}{(2\lambda - i)(2\mu + i)} w_A(k, \mu)^* \beta(k+1)^* \beta(k+1) w_A(k, \lambda).
\]

Equality (4.7) follows from (4.9). \(\square \)

5. Inversion of \(S \in \Omega_n \). To recover the system (1.1) from \(\{ \alpha_k \}_{k=0}^n \), it is convenient to use formula (3.11). The matrices \(V_-(r) \) \((r \geq 0) \) in this formula can be constructed recursively.
Proposition 5.1. Let \(S = V_{-}^{-1}(V_{-})^{-1} \in \Omega_n \). Then \(V_{-}(r+1) \) \((0 \leq r < n)\) can be constructed by the formula

\[
(5.1) \quad V_{-}(r+1) = \begin{bmatrix} V_{-}(r) & 0 \\ -t(r)S_{21}(r)V_{-}(r)^*V_{-}(r) & t(r) \end{bmatrix},
\]

where \(S_{21}(r) = [s_{r+1,0} \quad s_{r+1,1} \quad \ldots \quad s_{r+1,r}] \),

\[
(5.2) \quad t(r) = \left(s_{r+1,r+1} - S_{21}(r)V_{-}(r)^*V_{-}(r)S_{21}(r)^* \right)^{-\frac{1}{2}}.
\]

Proof. To prove the proposition it suffices to assume that \(V_{-}(r) \) satisfies (3.4) and prove \(S(r+1) = V_{-}(r+1)^{-1}(V_{-}(r+1)^*)^{-1} \). In view of Proposition 2.3 and (3.4), we have \(s_{r+1,r+1} - S_{21}(r)V_{-}(r)^*V_{-}(r)S_{21}(r)^* > 0 \), i.e., formula (5.2) is well defined. Now, it is easily checked that \(S(r+1)^{-1} = V_{-}(r+1)^*V_{-}(r+1) \) (see formula (2.7) in [17]).

Put \(T = \{t_{kj}\}_{k,j=0}^n = S^{-1} \),

\[
(5.3) \quad \hat{Q} = \{\hat{q}_{kj}\}_{k,j=0}^n = T\Pi\Pi^*T, \quad X = T\Phi_1, \quad Y = T\Phi_2,
\]

where \(t_{kj} \) and \(\hat{q}_{kj} \) are \(p \times p \) blocks of \(T \) and \(\hat{Q} \), respectively. Similar to [15, 16, 20, 22] and references therein, we get the next proposition.

Proposition 5.2. Let \(S \in \Omega_n \). Then \(T = S^{-1} \) is recovered from \(X \) and \(Y \) by the formula

\[
(5.4) \quad t_{kj} = \hat{q}_{kj} + \hat{q}_{k+1,j+1} - \hat{q}_{k+1,j} - \hat{q}_{k,j+1} + t_{k+1,j+1},
\]

or, equivalently, by the formula

\[
(5.5) \quad t_{kj} = \hat{q}_{kj} + 2 \sum_{r=1}^{n-k} \hat{q}_{k+r,j+r} - \sum_{r=1}^{n-k} \hat{q}_{k+r,j+r-1} - \sum_{r=1}^{n-k+1} \hat{q}_{k+r-1,j+r},
\]

where we fix \(t_{kj} = 0 \) and \(\hat{q}_{kj} = 0 \) for \(k > n \) or \(j > n \), and

\[
(5.6) \quad \hat{Q} = XX^* + YY^*.
\]

The block vectors \(X \) and \(Y \) are connected by the relations

\[
(5.7) \quad \sum_{r=0}^{n}(X_r - X_r^*) = 0, \quad \sum_{r=0}^{n-k} X_{n-r} = \sum_{r=0}^{n-k} \hat{q}_{k+r,r} \quad (k \geq 0), \quad \sum_{r=0}^{n-k} X_{n-r}^* = \sum_{r=0}^{n-k} \hat{q}_{r,k+r} \quad (k > 0).
\]
Proof. From the identity (1.2) and formula (5.3), it follows that

\begin{equation}
TA - A^*T = i\hat{Q},
\end{equation}

where \(\hat{Q}\) satisfies (5.6). The identity \(TA - A^*T = i\hat{Q}\) yields (5.4), which, in its turn, implies (5.5).

To derive (5.7), we rewrite (5.8) in the form

\begin{equation}
(A^* - \lambda I_{(n+1)p})^{-1}T - T(A - \lambda I_{(n+1)p})^{-1},
\end{equation}

and multiply both sides of (5.9) by \(\Phi_1\) from the right and by \(\Phi_1^*\) from the left. Taking into account (5.3), we get

\begin{equation}
\Phi_1^*(A^* - \lambda I_{(n+1)p})^{-1}X - X^*(A - \lambda I_{(n+1)p})^{-1}\Phi_1
= i\Phi_1^*(A^* - \lambda I_{(n+1)p})^{-1}\hat{Q}(A - \lambda I_{(n+1)p})^{-1}\Phi_1.
\end{equation}

It is easily checked (see formula (1.10) in [17]) that

\begin{equation}
(A - \lambda I_{(n+1)p})^{-1}\Phi_1 = \left(\frac{i}{2} - \lambda\right)^{-1}\text{col}[I_p \quad \zeta^{-1}I_p \quad \cdots \quad \zeta^{-n}I_p],
\end{equation}

\begin{equation}
\Phi_1^*(A^* - \lambda I_{(n+1)p})^{-1} = -\left(\frac{i}{2} + \lambda\right)^{-1}[I_p \quad \zeta I_p \quad \cdots \quad \zeta^n I_p],
\end{equation}

where \(\text{col}\) means column,

\begin{equation}
\zeta = \frac{\lambda - \frac{i}{2}}{\lambda + \frac{i}{2}}, \quad \frac{i}{2} - \lambda = \frac{i\zeta}{\zeta - 1}, \quad -\frac{i}{2} - \lambda = \frac{i}{\zeta - 1}.
\end{equation}

Notice that we have

\begin{equation}
\Phi_1^*T\Phi_1 = \Phi_1^*X = X^*\Phi_1,
\end{equation}

which implies the first equality in (5.7). Multiply both sides of (5.10) by \(\lambda^2 + \frac{1}{4}\) and use (5.11), (5.12) and the first equality in (5.7) to rewrite the result in the form

\begin{equation}
\frac{i}{\zeta - 1}\left([I_p \quad (\zeta^2 - 1)I_p \quad \cdots \quad (\zeta^n - 1)I_p]X
+ X^*\text{col}[0 \quad \zeta^{-1}(\zeta - 1)I_p \quad \cdots \quad \zeta^{-n}(\zeta^n - 1)I_p]\right)
= i[I_p \quad \zeta I_p \quad \cdots \quad \zeta^n I_p]\text{col}[I_p \quad \zeta^{-1}I_p \quad \cdots \quad \zeta^{-n}I_p].
\end{equation}

The equalities for the coefficients corresponding to the same degrees of \(\zeta\) on the left-hand side and on the right-hand side of (5.14) imply the second and the third relations in (5.7). \(\blacksquare\)
6. Factorization and similarity conditions. The block matrix

\[K = \begin{bmatrix} K_0 \\ K_1 \\ \vdots \\ K_n \end{bmatrix}, \]

where \(K_j \) are \(p \times (n+1)p \) matrices of the form

\[K_j = i\beta(j)[\beta(0)^* \beta(1)^* \ldots \beta(j-1)^* \beta(j)^*/2 \ 0 \ldots 0], \]

plays an essential role in [18]. From the proof of Theorem 3.4 in [18] the following result is immediate.

Proposition 6.1. Let a \((n+1)p \times (n+1)p \) matrix \(K \) be given by formulas (6.1) and (6.2), and let conditions (3.13) hold. Then \(K \) is similar to \(A \):

\[K = V_+AV_+^{-1}, \]

where \(V_+^{-1} \) are block lower triangular matrices.

Proposition 6.1 is a discrete analog of the theorem on similarity to the integration operator [19].

Remark 6.2. Note that \(V_+^{-1} \) can be chosen so that

\[V_+^{-1} \begin{bmatrix} \beta_1(0) \\ \vdots \\ \beta_1(n) \end{bmatrix} = \Phi_1. \]

Moreover, \(V_+^{-1} \) is a factor of \(S \), i.e., \(S = V_+^{-1}(V_+^*)^{-1} \in \Omega_n \). Any matrix \(S \in \Omega_n \) can be obtained in this way.

An analogue of Proposition 6.1 for the self-adjoint discrete Dirac system and block Toeplitz matrices \(S \) follows from the proof of Theorem 5.2 in [11].

Proposition 6.3. Let a \((n+1)p \times (n+1)p \) matrix \(K \) be given by formulas (6.1) and

\[K_j = i\beta(j)J[\beta(0)^* \ldots \beta(j-1)^* \beta(j)^*/2 \ 0 \ldots 0], \quad J = \begin{bmatrix} 0 & I_p \\ I_p & 0 \end{bmatrix}, \]

where \(\beta(k) \) are \(p \times 2p \) matrices. Let conditions \(\beta(k)J\beta(k)^* = I_p \ (0 \leq k \leq n) \) hold. Then \(K \) is similar to \(A \): \(K = V_+AV_+^{-1} \), where \(V_+^{-1} \) are block lower triangular matrices. Moreover, \(V_+ \) can be chosen so that \(S = V_+^{-1}(V_+^*)^{-1} \) is a block Toeplitz matrix.
On a New Class of Structured Matrices

Acknowledgment. The authors are grateful to Professor W. Schempp and GALA project for the opportunity to meet in Grossbothen and discuss this paper.

REFERENCES

