2009

An angle metric through the notion of Grassmann representative

Grigoris I. Kalogeropoulos
gkaloger@math.uoa.gr

Athanasios D. Karageorgos

Athanasios A. Pantelous

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1298

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
AN ANGLE METRIC THROUGH THE NOTION
OF GRASSMANN REPRESENTATIVE

GRIGORIS I. KALOGEROPOULOS†, ATHANASIOS D. KARAGEORGOS†, AND
ATHANASIOS A. PANTELOUS†

Abstract. The present paper has two main goals. Firstly, to introduce different metric topolo-
gies on the pencils \((F,G)\) associated with autonomous singular (or regular) linear differential or
difference systems. Secondly, to establish a new angle metric which is described by decomposable
multi-vectors called Grassmann representatives (or Plücker coordinates) of the corresponding sub-
spaces. A unified framework is provided by connecting the new results to known ones, thus aiding
in the deeper understanding of various structural aspects of matrix pencils in system theory.

Key words. Angle metric, Grassmann manifold, Grassmann representative, Plücker coordi-
nates, Exterior algebra.

AMS subject classifications. 15A75, 15A72, 32F45, 14M15.

1. Introduction - Metric Topologies on the Relevant Pencil \((F, G)\). The
perturbation analysis of rectangular (or square) matrix pencils is quite challenging
due to the fact that arbitrarily small perturbations of a pencil can result in eigenvalues
and eigenvectors vanishing. However, there are applications in which properties of a
pencil ensure the existence of certain eigenpairs. Motivated by this situation, in this
paper we consider the generalized eigenvalue problem (both for rectangular and for
square constant coefficient matrices) associated with autonomous singular (or regular)
linear differential systems

\[F\vec{\chi}(t) = G\vec{\chi}(t), \]

or, in the discrete analogue, with autonomous singular (or regular) linear difference
systems

\[F\vec{\chi}_{k+1} = G\vec{\chi}_k, \]

where \(\vec{\chi} \in \mathbb{C}^n\) is the state control vector and \(F, G \in \mathbb{C}^{m \times n}\) (or \(F, G \in \mathbb{C}^{n \times n}\)). In the
last few decades the perturbation analysis of such systems has gained importance, not
only in the context of matrix theory, but also in numerical linear algebra and control
theory; see [6], [8], [9], [11], [13].

*Received by the editors November 5, 2008. Accepted for publication February 5, 2009. Handling
Editor: Michael J. Tsatsomeros.
†Department of Mathematics, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece
(gkaloger@math.uoa.gr, athkar@math.uoa.gr, apantelous@math.uoa.gr).
The present paper is divided into two main parts. The first part deals with the
topological aspects, and the second part with the “relativistic” aspects of matrix
pencils. The topological results have a preliminary nature. By introducing different
metric topologies on the space of pencils \((F,G)\), a unified framework is provided
aiding in the deeper understanding of perturbation aspects. In addition, our work
connects the new angle metric (which in the authors’ view is more natural) to some
already known results. In particular, the angle metric is connected to the results in
\([8]-[11]\) and the notion of deflating subspaces of Stewart \([6],[8]\), and it is shown to be
equivalent to the notion of e.d. subspace.

Some useful definitions and notations are required.

Definition 1.1. For a given pair

\[L = (F, G) \in \mathcal{L}_{m,n} \triangleq \{ L : L = (F,G) ; F, G \in \mathbb{C}^{m \times n} \}, \]

we define:

a) the **flat matrix representation** of \(L\), \([L]_f = \begin{bmatrix} F & -G \end{bmatrix} \in \mathbb{C}^{m \times 2n}\), and

b) the **sharp matrix representation** of \(L\), \([L]_s = \begin{bmatrix} F \\ -G \end{bmatrix} \in \mathbb{C}^{2m \times n}\).

Definition 1.2. If \(L = (F, G) \in \mathcal{L}_{m,n}\), then \(L\) is called **non-degenerate** when

a) \(m \leq n\) and \(\text{rank}[L]_f = m\), or

b) \(m \geq n\) and \(\text{rank}[L]_s = n\).

Remark 1.3. In the case of the flat description, degeneracy implies zero row
minimal indices, whereas, in the case of the sharp description, degeneracy implies
zero column minimal indices.

Remark 1.4. If \(m = n\), then non-degeneracy implies that \(L\) is a regular pair.

By using these definitions, we can express the notion of strict equivalence as
follows.

Definition 1.5. Let \(L, L' \in \mathcal{L}_{m,n}\).

a) \(L\) and \(L'\) are called **strict equivalent** \((L \equiv_n L')\) if and only if there exist non-singular
matrices \(Q \in \mathbb{F}^{n \times n}\) and \(P \in \mathbb{F}^{m \times m}\) such that

\[[L']_f = P[L]_f \begin{bmatrix} Q & \odot \\ \odot & Q \end{bmatrix}, \]

or equivalently,

\[[L']_s = \begin{bmatrix} P & \odot \\ \odot & P \end{bmatrix} [L]_s Q. \]
b) L and L' are called left strict equivalent $(LE_L^L L')$ if and only if there exists a non-singular matrix $Q \in F^{n \times n}$ such that

$$[L']_f = P[L]_f.$$

Similarly, L and L' are called right strict equivalent $(LE_R^L L')$ if and only if there exists a non-singular matrix $Q \in F^{n \times n}$ such that

$$[L']_s = [L]_s Q.$$

For the pair $L = (F, G) \in L_{m,n}$, we can define four vector spaces as follows:

\begin{align*}
\mathcal{X}_f^c (L) & \triangleq \text{rowspan}_F [L]_f, & \mathcal{X}_f^r (L) & \triangleq \text{colspan}_F [L]_f, \\
\mathcal{X}_s^c (L) & \triangleq \text{rowspan}_F [L]_s, & \mathcal{X}_s^r (L) & \triangleq \text{colspan}_F [L]_s.
\end{align*}

It is clear that for every $L, L' \in L_{m,n}$ with $LE_L^L L'$, we have $\mathcal{X}_f^c (L) = \mathcal{X}_f^c (L')$ and $\mathcal{X}_s^r (L) = \mathcal{X}_s^r (L')$. Moreover, we observe that $\mathcal{X}_f^r (L)$ and $\mathcal{X}_s^c (L)$ are invariant under E_L^L-equivalence, but $\mathcal{X}_f^c (L)$ and $\mathcal{X}_s^r (L)$ are not always invariant under E_L^L-equivalence.

Also, for every $L, L' \in L_{m,n}$ with $LE_R^L L'$, we see that $\mathcal{X}_f^c (L) = \mathcal{X}_f^c (L')$ and $\mathcal{X}_s^r (L) = \mathcal{X}_s^r (L')$. Moreover, we observe that $\mathcal{X}_f^r (L)$ and $\mathcal{X}_s^c (L)$ are invariant under E_R^L-equivalence, but $\mathcal{X}_f^c (L)$ and $\mathcal{X}_s^r (L)$ are not always invariant under E_R^L-equivalence.

In the next lines, we provide a classification of the pairs considering their dimensions. Moreover, the invariant properties of the four vector subspaces are also investigated. The following classification is a simple consequence of the definitions and observations, so far. The table below demonstrates the type of subspace and the invariant properties.

Definition 1.6. For a non-degenerate pair $L = (F, G) \in L_{m,n}$, the normal-characteristic space, $\mathcal{X}_N (L)$, is defined as follows:

(i) when $m \leq n$, $\mathcal{X}_N (L) \triangleq \mathcal{X}_f^c (L)$, which is E_L^L-invariant,

(ii) when $m > n$, $\mathcal{X}_N (L) \triangleq \mathcal{X}_s^r (L)$, which is E_R^L-invariant.

A straightforward consequence of (i) is that for a regular pencil $L = (F, G) \in L_{n,n}$, we have that $\mathcal{X}_N (L) = \mathcal{X}_f^c (L)$,

$$\mathcal{X}_f^c (L) = \text{rowspan}_F [L]_f = \text{colspan}_F [L]_f$$

and

$$\mathcal{X}_s^r (L) = \text{colspan}_F [L]_s = \text{rowspan}_F [L]_s.$$
Furthermore, in the case where the pair is non-degenerate and \(m \leq n \), we have \(\text{rank} \ [L]_f = m \), \(\mathcal{X}_N (L) = \mathcal{X}_N^f (L) = \text{rowspace} [L]_f \) and \(\dim \mathcal{X}_N (L) = m \). Therefore, we can identify \(\mathcal{X}_N (L) \) with a point of the Grassmann manifold \(G (m, \mathbb{F}^{2n}) \). Note that if \(L_1 \mathcal{E}_H^L L \), then \(\mathcal{X}_N (L_1) \) represents the same point on \(G (m, \mathbb{F}^{2n}) \) as \(\mathcal{X}_N (L) \).

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>(\mathcal{X}_N^f (L))</th>
<th>(\mathcal{X}_N^c (L))</th>
<th>(\mathcal{X}_N^r (L))</th>
<th>Invariant spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m \leq n/2)</td>
<td>(\mathcal{E}_H^L)-invariant</td>
<td>(\mathcal{E}_H^L)-invariant</td>
<td>(\mathcal{E}_H^L)-invariant</td>
<td>(\mathcal{E}_H^L)-invariant</td>
</tr>
<tr>
<td>(n/2 < m \leq 2n)</td>
<td>(\mathcal{X}_N^c (L) \equiv \mathbb{F}^{2n}, \mathcal{E}_H^c)-invariant</td>
</tr>
<tr>
<td>(n \leq m/2 < 2m)</td>
<td>(\mathcal{X}_N^c (L) \equiv \mathbb{F}^{2n}, \mathcal{E}_H^c)-invariant</td>
</tr>
<tr>
<td>(n/2 < m \leq 2n)</td>
<td>(\mathcal{X}_N^c (L) \equiv \mathbb{F}^{2n}, \mathcal{E}_H^c)-invariant</td>
</tr>
<tr>
<td>Regular, (m = n)</td>
<td>(\mathcal{X}_N^c (L) \equiv \mathbb{F}^{2n}, \mathcal{E}_H^c)-invariant</td>
</tr>
</tbody>
</table>

Now, let us consider the set of regular pairs. For a pair \(L = (F, G) \in \mathcal{L}_{n,n} \), the equivalent class \(\mathcal{E}_H^L = \{ L_1 \in \mathcal{L}_{n,n} : [L_1]_f = P [L]_f, P \in \mathbb{F}^{n \times n}, \det P \neq 0 \} \) can be considered as a representation of a point on \(G (n, \mathbb{F}^{2n}) \). This point is fully identified by \(\mathcal{X}_N (L_1) \), where \(L_1 \in \mathcal{E}_H^L (L) \). Note that a point of \(G (n, \mathbb{F}^{2n}) \) does not represent a pair, but only the left-equivalent class of pairs. Furthermore, we shall denote by \(\Sigma_1^L \) the set of all distinct generalized eigenvalues (finite and infinite) of the pair \(L = (F, G) \in \mathcal{L}_{n,n} \), and by \(\Sigma_2^L \) the set of normalized generalized eigenvectors (Jordan vectors included) defined for every \(\lambda \in \Sigma_1^L \).

We define \(Q = \{ (\Sigma_1^L, \Sigma_2^L) : \forall L \in \mathcal{L}_{n,n} \} \) and consider the function

\[
f : \mathcal{L}_{n,n} \to Q : L \to f (L) \overset{\Delta}{=} (\Sigma_1^L, \Sigma_2^L) \in Q.
\]

It is obvious that \(f^{-1} \{ (\Sigma_1^L, \Sigma_2^L) : \forall L \in \mathcal{L}_{n,n} \} = \mathcal{E}_H^L (L), \) which means that \(f \) is \(\mathcal{E}_H^L \)-invariant. Thus, from the eigenvalue-eigenvector point of view, it is reasonable to identify the whole class \(\mathcal{E}_H^L (L) \) as a point of the Grassmann manifold. The study of topological properties of ordered regular pairs is intimately related with the generalized eigenvalue problem. The analysis above demonstrates that such properties may
be studied on the appropriate Grassmann manifold. In the next section, a new angle metric is introduced from the point of view of metric topology on the Grassmann manifold.

2. A New Angle Metric. In this session, we consider the Grassmann manifolds which are associated with elements of $\mathcal{L}_{m,n}$. In the case where $m \leq n$, the manifold $G(m, \mathbb{R}^{2n})$ is constructed, and on the other hand, when $m \geq n$ the manifolds $G(n, \mathbb{R}^{2m})$ is the subject of investigation. The relationship between the two Grassmann manifolds and the pairs of $\mathcal{L}_{m,n}$ is clarified by the following remark.

Remark 2.1. (i) For any $V \in G(m, \mathbb{R}^{2n})$, there exists an \mathcal{E}_H^L-equivalence class from $\mathcal{L}_{m,n}$ ($m \leq n$), which is represented by a non-degenerate $L = (F, G) \in \mathcal{L}_{m,n}$, such that $V = \text{rowspan } [L]_f$.

(ii) For any $V \in G(n, \mathbb{R}^{2m})$, there exists an \mathcal{E}_H^L-equivalence class from $\mathcal{L}_{m,n}$ ($m \geq n$), which is represented by a non-degenerate $L = (F, G) \in \mathcal{L}_{m,n}$, such that $V = \text{colspan } [L]_f$.

Definition 2.2 ([8]). A real valued function $d(\cdot, \cdot): G(m, \mathbb{R}^{2n}) \times G(m, \mathbb{R}^{2n}) \rightarrow \mathbb{R}_+^+$ ($m \leq n$) is called an orthogonal invariant metric if for every $V_1, V_2, V_3 \in G (m, \mathbb{R}^{2n})$ (where $V_1 = X_N (L_1)$, $V_2 = X_N (L_2)$, $V_3 = X_N (L_3)$, and $L_1, L_2, L_3 \in \mathcal{L}_{m,n}$ are non-degenerate), it satisfies the following properties:

(i) $d(X_N (L_1), X_N (L_2)) \geq 0$, and $d(X_N (L_1), X_N (L_2)) = 0$ if and only if $L_1 \mathcal{E}_H^L L_2$,

(ii) $d(X_N (L_1), X_N (L_2)) = d(X_N (L_2), X_N (L_1))$,

(iii) $d(X_N (L_1), X_N (L_2)) \leq d(X_N (L_1), X_N (L_3)) + d(X_N (L_3), X_N (L_2))$,

(iv) $d(\text{colspan } [L_1]_f, \text{colspan } [L_2]_f) = d(\text{colspan } [L_1]^t_f, \text{colspan } [L_2]^t_f)$ for any orthogonal matrix $U \in \mathbb{R}^{m \times m}$.

Similarly, we can define the orthogonal invariant metric on $G(n, \mathbb{R}^{2m})$. Furthermore, we summarize some already known results for metrics on $G(m, \mathbb{R}^{2n})$, $m \leq n$, and afterwards, we introduce the new angle metric.

Theorem 2.3 ([12]). For any two points $\forall_{L_1, \forall_{L_2} \in G(m, \mathbb{R}^{2n})$ such that

$$\forall_{L_1} = X_N^t (L_1) = \text{colspan}_{\mathbb{R}} [L_1]^t_f \quad \text{and} \quad \forall_{L_2} = X_N^t (L_2) = \text{colspan}_{\mathbb{R}} [L_2]^t_f,$$

if we define $X_1 = \left([L_1]^t_f [L_1]_f \right)^{-\frac{1}{2}} [L_1]_f$ and $X_2 = \left([L_2]^t_f [L_2]_f \right)^{-\frac{1}{2}} [L_2]_f$, then

$$J(\forall_{L_1}, \forall_{L_2}) = \arccos \left(\text{det} \left[X_1 X_1^t \right] \right)^{\frac{1}{2}} \quad (2.1)$$

and

$$d_J(\forall_{L_1}, \forall_{L_2}) = \sin J(\forall_{L_1}, \forall_{L_2}) \quad (2.2)$$

are orthogonal invariant metrics on $G(m, \mathbb{R}^{2n})$.
An Angle Metric Through the Notion of Grassmann Representative

Note that metrics (2.1) and (2.2) have been used extensively in [8]-[11], on the perturbation analysis of the generalized eigenvalue-eigenvector problem. These metrics have also been related to other metrics on the Grassmann manifold, for instance, the “GAP” between subspaces, \(\sin \theta(X, Y) \), etc.; see [8]-[11], [13]-[14].

Now, we denote \(\mathcal{L}_{m,n}/\mathcal{E}_{K}^{L} \) as the quotient \(\mathcal{E}_{K}^{L} \)-the collection of equivalence classes. It is easily derived that there is an one-to-one map

\[
\varphi : \mathcal{L}_{m,n}/\mathcal{E}_{K}^{L} \to \Lambda (m, \mathbb{R}^{2n})
\]

such that

\[
\mathcal{E}_{K}^{L}(L) \to \varphi (\mathcal{E}_{K}^{L}(L)) \triangleq \chi_{N}(L) = \mathcal{V}_{L} \triangleq \Lambda (m, \mathbb{R}^{2n}).
\]

Considering map (2.3), we can always associate an \(m \)-dimensional subspace \(\mathcal{V}_{L} \) of \(\mathbb{R}^{2n} \) to a one-dimensional subspace of the vector space \(\Lambda^{m}(\mathbb{R}^{2n}) \) (see [2]-[5]), or equivalently, a point on the Grassmann variety \(\Omega(m, \mathbb{R}^{2n}) \), which are denoted by \(g(\mathcal{V}_{L}) \). It is also known that if \(\bar{x}, \bar{x}' \in \Lambda^{m}(\mathbb{R}^{2n}) \) are two Grassmann representatives of \(\mathcal{V}_{L} \), then \(\bar{x}' = \lambda \bar{x} \) where \(\lambda \in \mathbb{R} \setminus \{0\} \).

Definition 2.4. Let \(L = (F,G) \in \mathcal{L}_{m,n} \) and \(\mathcal{V}_{L} \in \Lambda (m, \mathbb{R}^{2n}) \) be a linear subspace of \(\mathbb{R}^{2n} \) that corresponds to the equivalent class \(\mathcal{E}_{K}^{L}(L) \). If \(\bar{x} \in \Lambda^{m}(\mathbb{R}^{2n}) \) is a Grassmann representative of \(\mathcal{V}_{L} \) and \(\bar{x} = [x_{0}, x_{1}, \ldots, x_{v}]^{t}, \; v = \binom{2n}{m} - 1 \), then we define the normal Grassmann representative of as the decomposable multi-vector which is given by

\[
\tilde{\bar{x}} = \begin{cases}
\frac{\text{sign}(x_{v})}{\|\bar{x}\|_{2}} \bar{x}, & \text{if } x_{v} \neq 0 \\
\frac{\text{sign}(x_{i})}{\|\bar{x}\|_{2}} \bar{x}, & \text{if } x_{v} = 0 \text{ and } x_{i} \text{ is the first non-zero component of } \bar{x}
\end{cases}
\]

where \(\text{sign}(x_{i}) = \begin{cases}
1, & \text{if } x_{i} > 0 \\
-1, & \text{if } x_{i} < 0
\end{cases} \).

Proposition 2.5. The normal Grassmann representative \(\tilde{\bar{x}} \) of the subspace \(\mathcal{V}_{L} \in \Lambda (m, \mathbb{R}^{2n}) \) is unique and \(\|\tilde{\bar{x}}\|_{2} = 1 \) (\(\|\cdot\|_{2} \) denotes the Euclidean norm).

Proof. Let \(\bar{x}' \in \Lambda^{m}(\mathbb{R}^{2n}) \) be another Grassmann representative of \(\mathcal{V}_{L} \). It is clear
that $\vec{x}' = \lambda \vec{x}$ for some $\lambda \in \mathbb{R} \setminus \{0\}$. By Definition 2.4,

$$\vec{x}' = \begin{cases}
\frac{\text{sign}(x'_v)}{\|x'_v\|_2} x'_v, & \text{if } x'_v = \lambda x_v
eq 0 \\
\frac{\text{sign}(x'_v)}{\|x'_v\|_2} x'_v, & \text{if } x'_v = \lambda x_v = 0 \text{ and } x'_i = \lambda x_i \\
\frac{\lambda \text{sign}(\lambda)}{|\lambda|\|\vec{x}\|_2} x, & \text{if } x_v
eq 0 \\
\frac{\lambda \text{sign}(\lambda)}{|\lambda|\|\vec{x}\|_2} x, & \text{if } x_v = 0 \text{ and } x_i \text{ is the first non-zero component of } x
\end{cases} = \tilde{x},$$

keeping in mind that $\frac{\lambda \text{sign}(\lambda)}{|\lambda|} = 1$. Thus, \tilde{x} is a unique Grassmann representative of the subspace V_L. The property $\|\tilde{x}\|_2 = 1$ is obvious. □

Definition 2.6 (The new angle metric). For $V_{L_1}, V_{L_2} \in G(m, \mathbb{R}^{2n})$, we define the angle metric, $\langle V_{L_1}, V_{L_2} \rangle$, by

$$\langle V_{L_1}, V_{L_2} \rangle \triangleq \arccos(|\tilde{x}_1, \tilde{x}_2|), \quad (2.4)$$

where \tilde{x}_1, \tilde{x}_2 are the normal Grassmann representatives of V_{L_1}, V_{L_2}, respectively, and $\langle \cdot, \cdot \rangle$ denotes the inner product.

In what it follows, we denote the set of strictly increasing sequences of l integers $(1 \leq l \leq m)$ chosen from $1, 2, \ldots, m$; for example, $Q_{2,m} = \{(1,2), (1,3), (2,3), \ldots\}$. Clearly, the number of the sequences of $Q_{l,m}$ is equal to $\binom{m}{l}$.

Furthermore, we assume that $A = [a_{ij}] \in \mathcal{M}_{m,n}(\mathbb{R})$, where $\mathcal{M}_{m,n}(\mathbb{R})$ denotes the set of $m \times n$ matrices over \mathbb{R}. Let μ, ν be positive integers satisfying $1 \leq \mu \leq m$, $1 \leq \nu \leq n$, $\alpha = (i_1, \ldots, i_\mu) \in Q_{\mu,m}$ and $\beta = (j_1, \ldots, j_\nu) \in Q_{\nu,n}$. Then $A[\alpha | \beta] \in \mathcal{M}_{\mu,\nu}(\mathbb{R})$ denotes the submatrix of A formed by the rows i_1, i_2, \ldots, i_μ and the columns j_1, j_2, \ldots, j_ν.

Finally, for $1 \leq l \leq \min\{m,n\}$ the l-compound matrix (or l-adjugate) of A is the $\binom{m}{l} \times \binom{n}{l}$ matrix whose entries are $\det{A[\alpha | \beta]}$, $\alpha \in Q_{l,m}$, $\beta \in Q_{l,n}$, arranged lexicographically in α and β. This matrix is denoted by $C_l(A)$; see [2]-[5] for more details about this interesting matrix. Moreover, it should be stressed out that a compound matrix is in fact a vector corresponding to the Grassmann representative (or Plücker coordinates) of a space.

Proposition 2.7. The angle metric (2.4) is an orthogonal invariant metric on the Grassmann manifold $G(m, \mathbb{R}^{2n})$.

Proof. It is straightforward to verify conditions (i) and (ii) of Definition 2.2. Condition (iii) is derived by the corresponding inequality of angles between vectors.
which is a consequence of the Δ-inequality on the unit sphere. Thus, we need to prove (iv). Let $\mathcal{V}_L, \mathcal{V}_U \in G (m, \mathbb{R}^{2n})$, we have that

$$\| \mathcal{V}_L \mathcal{V}_U \|_2 = \| \mathcal{V}_L \|_2 \| \mathcal{V}_U \|_2 = 1,$$

and

$$\det \left([L_1]_f^t [L_2]_f^t \right) = \det \left([L_1]_f^t U, [L_2]_f^t U \right) = \det \left([L_1]_f^t, [L_2]_f^t \right).$$

Moreover, if U is an orthogonal matrix, then an orthogonal invariant metric is obtained. \quad \blacksquare

This angle metric on $G (m, \mathbb{R}^{2n})$ is related to the standard metrics (2.1) and (2.2).

Theorem 2.8. For every $\mathcal{V}_L, \mathcal{V}_L \in G (m, \mathbb{R}^{2n})$, we have that

$$\angle (\mathcal{V}_L, \mathcal{V}_L) = J (\mathcal{V}_L, \mathcal{V}_L)$$

and

$$\sin \{ \angle (\mathcal{V}_L, \mathcal{V}_L) \} = d_J (\mathcal{V}_L, \mathcal{V}_2) = \sin \{ J (\mathcal{V}_L, \mathcal{V}_2) \}. $$

Proof. By using the Binet-Cauchy theorem [3], we obtain that

$$\det [X_1X_1^t X_2X_1^t] = C_m \left(X_1 \right) C_m \left(X_2 \right) C_m \left(X_1 \right)$$

$$= C_m \left(X_1 \right) C_m \left(X_2 \right) C_m \left(X_1 \right).$$

By Theorem 2.3, we also have

$$C_m \left(X_i \right) = \left[C_m \left([L_i]_f \right) C_m \left([L_i]_f \right) \right]^{\frac{1}{2}} C_m \left([L_i]_f \right) = \frac{q (\mathcal{V}_L_i)}{\| q (\mathcal{V}_L_i) \|_2} = \varepsilon_i X_i,$$

where $\varepsilon = \pm 1, i = 1, 2$.

Thus, since

$$\det \left[X_1X_1^t X_2X_1^t \right] = \tilde{x}_1^t \tilde{x}_2^t \tilde{x}_1^t \tilde{x}_2^t = \left(\langle \tilde{x}_1, \tilde{x}_2 \rangle \right)^2,$$

it follows that

$$\left(\det \left[X_1X_1^t X_2X_1^t \right] \right)^{\frac{1}{2}} = | \langle \tilde{x}_1, \tilde{x}_2 \rangle |.$$

Then

$$\arccos \left(\det \left[X_1X_1^t X_2X_1^t \right] \right)^{\frac{1}{2}} = \arccos | \langle \tilde{x}_1, \tilde{x}_2 \rangle | \iff J (\mathcal{V}_L_1, \mathcal{V}_L_2) = \angle (\mathcal{V}_L_1, \mathcal{V}_L_2),$$

and

$$\sin \{ \angle (\mathcal{V}_L_1, \mathcal{V}_L_2) \} = \sin \{ J (\mathcal{V}_L_1, \mathcal{V}_L_2) \} = d_J (\mathcal{V}_L_1, \mathcal{V}_L_2). \quad \blacksquare$$
Remark 2.9. When $m = n$, this angle metric is suitable for the perturbation analysis for the generalized eigenvalue-eigenvector problem.

Acknowledgments. The authors are grateful to the anonymous referees for their insightful comments and suggestions.

REFERENCES