2009

On the characterization of graphs with pendent vertices and given nullity

Bolian Liu
liubl@scnu.edu.cn

Yufei Huang

Siyuan Chen

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1340

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
ON THE CHARACTERIZATION OF GRAPHS WITH PENDENT VERTICES AND GIVEN NULLITY*

BOLIAN LIU†, YUFEI HUANG†, AND SIYUAN CHEN†

Abstract. Let G be a graph with n vertices. The nullity of G, denoted by $\eta(G)$, is the multiplicity of the eigenvalue zero in its spectrum. In this paper, we characterize the graphs (resp. bipartite graphs) with pendent vertices and nullity η, where $0 < \eta \leq n$. Moreover, the minimum (resp. maximum) number of edges for all (connected) graphs with pendent vertices and nullity η are determined, and the extremal graphs are characterized.

Key words. Eigenvalue, Nullity, Pendent vertex.

AMS subject classifications. 05C50.

1. Introduction. Let G be a simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. For any $v \in V(G)$, the degree and neighborhood of v are denoted by $d(v)$ and $N(v)$, respectively. If W is a nonempty subset of $V(G)$, then the subgraph induced by W is the subgraph of G obtained by taking the vertices in W and joining those pairs of vertices in W which are joined in G. We write $G - \{v_1, v_2, \ldots, v_k\}$ for the graph obtained from G by removing the vertices v_1, v_2, \ldots, v_k and all edges incident to any of them.

The disjoint union of two graphs G_1 and G_2 is denoted by $G_1 \cup G_2$. The disjoint union of k copies of G is often written by kG. The null graph of order n is the graph with n vertices and no edges. As usual, the complete graph, the cycle, the path, and the star of order n are denoted by K_n, C_n, P_n and S_n, respectively. An isolated vertex is sometimes denoted by K_1.

Let $t \geq 2$ be an integer. A graph G is called t-partite if $V(G)$ admits a partition into t classes X_1, X_2, \ldots, X_t such that every edge has its ends in different classes; vertices in the same partition must not be adjacent. Such a partition (X_1, X_2, \ldots, X_t) is called a t-partition of G. A complete t-partite graph is a simple t-partite graph with partition (X_1, X_2, \ldots, X_t) in which each vertex of X_i is joined to each vertex of $G - X_i$ ($1 \leq i \leq t$). If $|X_i| = n_i$ ($1 \leq i \leq t$), such a graph is denoted by $K_{n_1, n_2, \ldots, n_t}$.

* Received by the editors February 28, 2009. Accepted for publication November 11, 2009. Handling Editor: Bryan L. Shader.
†School of Mathematical Science, South China Normal University, Guangzhou, 510631, P.R. China (liubl@scnu.edu.cn, fayger@qq.com, csyme@163.com). The first author is supported by NSF of China (NO.10771080) and SRFDP of China (NO.20070574006).
Instead of “2-partite” (resp. “3-partite”) one usually says bipartite (resp. tripartite).

The adjacency matrix $A(G)$ of a graph G of order n, with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$, is $n \times n$ symmetric matrix $[a_{ij}]$, such that $a_{ij} = 1$ if v_i and v_j are adjacent and 0, otherwise. A graph is said to be singular (resp. nonsingular) if its adjacency matrix is a singular (resp. nonsingular) matrix. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $A(G)$ are said to be the eigenvalues of G, and to form the spectrum of this graph. The number of zero eigenvalues in the spectrum of a graph G is called its nullity and is denoted by $\eta(G)$. Let $r(A(G))$ be the rank of $A(G)$. Obviously, $\eta(G) = n - r(A(G))$. The rank of a graph G is the rank of its adjacency matrix $A(G)$, denoted by $r(G)$. Then $\eta(G) = n - r(G)$. Clearly, if G is a simple connected graph, then $0 \leq r(G) \leq |V(G)| \leq |E(G)| + 1$.

The problem of characterizing all graphs G with $\eta(G) > 0$ was posed in [1] and [10]. This problem is relevant in many disciplines of science (see [2, 3]), and is very difficult. At present, only some particular cases are known (see [3-9,11-12]). On the other hand, this problem is of great interest in chemistry, because, for a bipartite graph G (corresponding to an alternant hydrocarbon), if $\eta(G) > 0$, then it indicates that the molecule which such a graph represents is unstable (see [8]). The nullity of a graph G is also meaningful in linear algebra, since it is related to the singularity and the rank of $A(G)$.

It is known that $0 \leq \eta(G) \leq n - 2$ if G is a simple graph on n vertices and G is not isomorphic to nK_1. In [4], B. Cheng and B. Liu characterized the extremal graphs attaining the upper bound $n - 2$ and the second upper bound $n - 3$.

Lemma 1.1. ([4]) Suppose that G is a simple graph of order n. Then

1. $\eta(G) = n - 2$ if and only if G is isomorphic to $K_{n_1, n_2} \cup kK_1$, where $n_1 + n_2 + k = n \geq 2$ and $n_1, n_2 > 0, \; k \geq 0$.

2. $\eta(G) = n - 3$ if and only if G is isomorphic to $K_{n_1, n_2, n_3} \cup kK_1$, where $n_1 + n_2 + n_3 + k = n \geq 3$ and $n_1, n_2, n_3 > 0, \; k \geq 0$.

As a continuation, S. Li ([9]) determined the extremal graphs with pendant vertices which achieve the third upper bound $n - 4$ and fourth upper bound $n - 5$, respectively. Recently, Y. Fan and K. Qian ([6]) characterized all bipartite graphs of order n with nullity $n - 4$.

Definition 1.2. ([6]) Let $P_n = v_1v_2 \cdots v_n \; (n \geq 2)$ be a path. Replacing each vertex v_i by an empty graph O_{m_i} of order m_i for $i = 1, 2, \ldots, n$ and joining edges between each vertex of O_i and each vertex of O_{i+1} for $i = 1, 2, \ldots, n - 1$, we get a graph G of order $(m_1 + m_2 + \cdots + m_n)$, denoted by $O_{m_1}O_{m_2} \cdots O_{m_n}$. Such graph is called an expanded path of length n, and the empty graph O_{m_i} is called an expanded
vertex of order m_i for $i = 1, 2, \ldots, n$.

Lemma 1.3. ([6]) Let G be a bipartite graph of order $n \geq 4$. Then $\eta(G) = n - 4$ if and only if G is isomorphic to a graph H possibly adding some isolated vertices, where H is one of the following graphs: a union of two disjoint expanded paths both of length 2, an expanded path of length 4 or 5.

In Section 2 of this paper, we give a characterization of the graphs (resp. connected graphs) with pendent vertices and nullity η ($0 < \eta \leq n$). As corollaries of this characterization, some results in [9] can be obtained immediately. Moreover, all bipartite graphs (resp. bipartite connected graphs) with pendent vertices and nullity η are characterized. (It is known from [6] that the nullity set of all bipartite graphs of order n is $\{n - 2k | k = 0, 1, \ldots, \lfloor n/2 \rfloor\}$.)

Let $\Gamma(n, e)$ be the set of all simple graphs with n vertices and e edges. In [4], the maximum nullity number of graphs with n vertices and e edges, $M(n, e) = \max \{\eta(A) | A \in \Gamma(n, e)\}$, was studied, where $n \geq 1$ and $0 \leq e \leq \binom{n}{2}$. Conversely, we shall study the number of edges for the graphs with pendent vertices and nullity η ($0 < \eta \leq n$). Let $e^{(\eta)}_{\min}$ and $e^{(\eta)}_{\max}$ ($\tilde{e}^{(\eta)}_{\min}$ and $\tilde{e}^{(\eta)}_{\max}$) denote the minimum and maximum number of edges for all (connected) graphs with pendent vertices and nullity η. Let $G_{\max}^{(\eta)}$ (resp. $\tilde{G}_{\max}^{(\eta)}$) denote the graphs (resp. connected graphs) of nullity η with pendent vertices and $e^{(\eta)}$ (resp. $\tilde{e}^{(\eta)}$) edges. We call $G_{\min}^{(\eta)}$ (resp. $\tilde{G}_{\min}^{(\eta)}$) the minimum graphs (resp. connected graphs) with pendent vertices and nullity η. Similarly, we can define $G_{\max}^{(\eta)}$ (resp. $\tilde{G}_{\max}^{(\eta)}$), the maximum graphs (resp. connected graphs) with pendent vertices and nullity η. In Section 3, we determine the number $e^{(\eta)}_{\min}$, $e^{(\eta)}_{\max}$, $\tilde{e}^{(\eta)}_{\min}$, $\tilde{e}^{(\eta)}_{\max}$ and characterize the graphs $G_{\min}^{(\eta)}$, $G_{\max}^{(\eta)}$, $\tilde{G}_{\min}^{(\eta)}$, $\tilde{G}_{\max}^{(\eta)}$, respectively. Now we list some known results needed in this paper.

Lemma 1.4. ([12]) Let G be a simple graph of order n. Then

1. $\eta(G) = n$ if and only if G is a null graph.

2. If $G = G_1 \cup G_2 \cup \cdots \cup G_t$, where G_1, G_2, ..., G_t are the connected components of G, then $\eta(G) = \sum_{i=1}^{t} \eta(G_i)$.

Lemma 1.5. ([9]) Let v be a pendent vertex of a graph G and u be the vertex in G adjacent to v. Then $\eta(G) = \eta(G - \{u, v\})$.

Lemma 1.6. ([4])

\[
\begin{align*}
r(P_n) &= \begin{cases}
n - 1, & n \text{ is odd};
n, & otherwise. \end{cases} \quad r(C_n) = \begin{cases}
n - 2, & n \equiv 0 \text{ (mod 4)};
n, & otherwise. \end{cases}
\end{align*}
\]

2. The graphs with pendent vertices and nullity η. Let η be an integer with $0 < \eta \leq n$. Now the graphs with pendent vertices and nullity η are characterized
as follows, where \(n - 3 \leq \eta \leq n \).

Lemma 2.1. Let \(G \) be a simple graph of order \(n \) with pendent vertices. Then

1. There exists no such graph \(G \) with nullity \(\eta(G) = n \), \(n - 1 \) or \(n - 3 \);

2. \(\eta(G) = n - 2 \) if and only if \(G \) is isomorphic to \(S_{n-k} \cup kK_1 \) \((0 \leq k \leq n - 2) \).

Proof. (1) Obviously, there exists no such graph \(G \) with nullity \(\eta(G) = n - 1 \). Moreover, by Lemmas 1.1 and 1.4, the graph \(G \) of nullity \(\eta(G) = n \) (resp. \(n - 3 \)) contains no pendent vertices. This leads to the desired results.

(2) Since the graph \(G \) has pendent vertices, combining this with Lemma 1.1, \(\eta(G) = n - 2 \) if and only if \(G \) is isomorphic to \(K_1, n_2 \cup kK_1 \), where \(1 + n_2 + k = n \) and \(n_2 > 0, k \geq 0 \). This completes the proof. \(\square \)

Now we give a characterization of the graphs with pendent vertices and nullity \(\eta \) for \(0 < \eta \leq n - 4 \). Let \(\tilde{\Gamma}^{(n)} \) be the set of all connected graphs of order \(n \) with nullity \(\eta \) \((0 \leq \eta \leq n)\). Then it follows from Lemmas 1.1 and 1.4 that \(\tilde{\Gamma}^{(n)} = \tilde{\Gamma}^{(n-1)} = \emptyset \), \(\tilde{\Gamma}^{(n-2)} = \{ K_{n_1, n_2} | n_1 + n_2 = n \), and \(n_1, n_2 > 0 \} \), \(\tilde{\Gamma}^{(n-3)} = \{ K_{n_1, n_2, n_3} | n_1 + n_2 + n_3 = n \), and \(n_1, n_2, n_3 > 0 \} \).

Let \(n, k, t \) be positive integers with \(4 \leq k < n \) and \(1 \leq t \leq \lfloor \frac{n}{2} \rfloor - 1 \), and let \(p, n_j, p_j \) \((1 \leq j \leq t)\) be integers with \(n_j \geq p_j > 1 \) \((1 \leq j \leq t)\), \(\sum_{j=1}^{t} p_j + 2 = k \), \(\sum_{j=1}^{t} n_j + p + 2 = n \). Let \(H_{n, k} \) be any graph of order \(n \) created from \(H_j \in \tilde{\Gamma}^{(n_j-p_j)} \) \((j = 1, 2, \ldots, t)\), \(pK_1 \) and \(K_2 \) (suppose \(V(K_2) = \{ u, v \} \)) by connecting \(v \) to all vertices of \(pK_1 \) and \(H_j \) \((j = 1, 2, \ldots, t)\) (see Figure 1.). Suppose that \(E^* \) is a subset of \(E(G) \). Let \(G\{E^*\} \) (resp. \(\tilde{G}\{E^*\} \)) denote the (resp. connected) spanning subgraph of \(G \) which contains the edges in \(E^* \).

Figure 1. \(H_{n, k} \) and \(B_{n, k} \)
Theorem 2.2. Let G be a graph (resp. connected graph) of order n with pendent vertices. Then $\eta(G) = n - k$ ($4 \leq k < n$) if and only if G is isomorphic to $H_n, k\{E^*\}$ (resp. $\tilde{H}_n, k\{E^*\}$), where $E^* = \bigcup_{j=1}^t E(H_j) \cup \{uv\}$.

Proof. To begin with, we need to check that $\eta(H_n, k\{E^*\}) = \eta(\tilde{H}_n, k\{E^*\}) = n - k$ ($4 \leq k < n$). Note that u is a pendent vertex of $H_n, k\{E^*\}$ (resp. $\tilde{H}_n, k\{E^*\}$) and $N(u) = \{v\}$. Delete u, v from $H_n, k\{E^*\}$ (resp. $\tilde{H}_n, k\{E^*\}$), then the resultant graph is $(\bigcup_{j=1}^t H_j) \cup pK_1$. Since $H_j \in \tilde{\Upsilon}^{(p_j)}_{n_j}$, we have $\eta(H_j) = n_j - p_j$ ($j = 1, 2, \ldots, t$). Hence by Lemmas 1.4 and 1.5,

$$\eta(H_n, k\{E^*\}) = \eta(\tilde{H}_n, k\{E^*\}) = \eta((\bigcup_{j=1}^t H_j) \cup pK_1) = \sum_{j=1}^t \eta(H_j) + p \cdot \eta(K_1) = \sum_{j=1}^t (n_j - p_j) + p = (\sum_{j=1}^t n_j + p + 2) - (\sum_{j=1}^t p_j + 2) = n - k.$$

On the other hand, assume that $\eta(G) = n - k$. Choose a pendent vertex, say x, in G. Let $N(x) = \{y\}$. Delete x, y from G, and let the resultant graph be $G_1 = G_{11} \cup G_{12} \cup \cdots \cup G_{1q}$, where $G_{11}, G_{12}, \ldots, G_{1q}$ are connected components of G_1. Some of these components may be trivial, i.e. K_1. We conclude that there exist t nontrivial connected components, where $1 \leq t \leq \left[\frac{k}{2}\right] - 1$. Without loss of generality, assume that $G_{11}, G_{12}, \ldots, G_{1t}$ be nontrivial. By contradiction, suppose that $t = 0$ or $t \geq \left[\frac{k}{2}\right]$.

Case 1. $t = 0$. Then all the connected components are trivial, adding x, y to G_1 gives a star with some isolated vertices, which contradicts to Lemma 2.1.

Case 2. $t \geq \left[\frac{k}{2}\right]$. By Lemmas 1.1, 1.4 and 1.5, $\eta(G) = \sum_{j=1}^t \eta(G_{1j}) + z\eta(K_1) \leq \sum_{j=1}^t (|V(G_{1j})| - 2) + z$, where z is the number of isolated vertices in G_1. The above equality holds iff G_{11}, \ldots, G_{1t} are all complete bipartite graphs.

Therefore, $\eta(G) \leq \sum_{j=1}^t |V(G_{1j})| - 2t + z = (n - 2 - z) - 2t + z = n - 2t - 2 < n - k$ for $t \geq \left[\frac{k}{2}\right]$, contradicting that $\eta(G) = n - k$.

Hence $1 \leq t \leq \left[\frac{k}{2}\right] - 1$. Let $|V(G_{1j})| = n_j$ ($j = 1, 2, \ldots, t$). Then $G_1 = (\bigcup_{j=1}^t G_{1j}) \cup (n - \sum_{j=1}^t n_j - 2)K_1$. It follows from Lemmas 1.4 and 1.5 that

$$n - k = \eta(G) = \eta(G_1) = \eta(\bigcup_{j=1}^t G_{1j}) + \eta(n - \sum_{j=1}^t n_j - 2)K_1.$$

Since G_{1j} ($j = 1, 2, \ldots, t$) are nontrivial connected components, suppose that $\eta(G_{1j}) = n_j - p_j$, where $1 < p_j \leq n_j$ ($j = 1, 2, \ldots, t$). Thus we have

$$n - k = \sum_{j=1}^t (n_j - p_j) + (n - \sum_{j=1}^t n_j - 2).$$

Hence $\sum_{j=1}^t p_j + 2 = k$ and $G_{1j} \in \tilde{\Upsilon}^{(p_j)}_{n_j}$ ($j = 1, 2, \ldots, t$).

Let $p = n - \sum_{j=1}^t n_j - 2$. In order to recover G, to add x, y to G_1, we need
to insert edges from \(y \) to \(x \) and to some (maybe partial or all) vertices of \(pK_1 \) and \(G_{1j} \) (\(j = 1, 2, \ldots, t \)). Thus the graph (resp. connected graph) \(G \) is isomorphic to \(H_{n, k}\{E^*\} \) (resp. \(H_{n, k}\{E^*\} \)), where \(E^* = \bigcup_{j=1}^{t} E(H_j) \cup \{uv\} \).

Now we have the following corollaries of this characterization.

\[
\begin{align*}
K_{n_1, n_2} & \quad pK_1 \\
K_{n_1, n_2, n_3} & \quad pK_1
\end{align*}
\]

\textbf{Figure 2.} \(Q_1 \) and \(Q_2 \)

Let \(Q_1 \) be a graph of order \(n \) created from \(K_{n_1, n_2}, pK_1 \) and \(K_2 \) (suppose \(V(K_2) = \{u, v\} \)) with \(n_1 + n_2 + p + 2 = n \) and \(n_1, n_2 > 0, p \geq 0 \) by connecting \(v \) to all vertices of \(pK_1 \) and \(K_{n_1, n_2} \). Let \(Q_2 \) be a graph of order \(n \) created from \(K_{n_1, n_2, n_3}, pK_1 \) and \(K_2 \) (suppose \(V(K_2) = \{u, v\} \)) with \(n_1 + n_2 + n_3 + p + 2 = n \) and \(n_1, n_2, n_3 > 0, p \geq 0 \) by connecting \(v \) to all vertices of \(pK_1 \) and \(K_{n_1, n_2, n_3} \) (see Figure 2.).

\textbf{Corollary 2.3.} Let \(G \) be a graph (resp. connected graph) of order \(n \) with pendent vertices. Then

1. \(\eta(G) = n - 4 \) if and only if \(G \) is isomorphic to \(Q_1\{E^*\} \) (resp. \(\tilde{Q}_1\{E^*\} \)), where \(E^* = E(K_{n_1, n_2}) \cup \{uv\} \).

2. \(\eta(G) = n - 5 \) if and only if \(G \) is isomorphic to \(Q_2\{E^*\} \) (resp. \(\tilde{Q}_2\{E^*\} \)), where \(E^* = E(K_{n_1, n_2, n_3}) \cup \{uv\} \).

\textbf{Proof.} By Theorem 2.2, \(\eta(G) = n - k = n - 4 \) implies \(t = 1, p_1 = 2 \), while \(\eta(G) = n - k = n - 5 \) implies \(t = 1, p_1 = 3 \). Besides, \(\overline{\Gamma}_n^{(n-2)} = \{K_{n_1, n_2} | n_1 + n_2 = n, \text{ and } n_1, n_2 > 0\} \), \(\overline{\Gamma}_n^{(n-3)} = \{K_{n_1, n_2, n_3} | n_1 + n_2 + n_3 = n, \text{ and } n_1, n_2, n_3 > 0\} \). Then we obtain the results as desired. \(\square \)

\textbf{Remark.} If \(G \) is connected, the results of Corollary 2.3 are that in [9].

Now we shall determine all bipartite graphs with pendent vertices and nullity \(\eta = n - 2k \) (\(k = 0, 1, \ldots, \lfloor n/2 \rfloor \)). Since \(S_{n-k} \cup kK_1 \) (\(0 \leq k \leq n - 2 \)) is a bipartite graph, combining Lemma 2.1, the following corollary is obvious.

\textbf{Corollary 2.4.} Let \(G \) be a bipartite graph of order \(n \) with pendent vertices. Then
(1) There exists no such graphs G with nullity $\eta(G) = n$;

(2) $\eta(G) = n - 2$ if and only if G is isomorphic to $S_{n-k} \cup kK_1$ ($0 \leq k \leq n - 2$).

Let $\Phi_n^{(n)}$ be the set of all connected bipartite graphs of order n with nullity $\eta = n - 2k$ ($k = 0, 1, \ldots, \lfloor n/2 \rfloor$). It is easy to see that $\Phi_n^{(n)} = \emptyset, \Phi_n^{(n-2)} = \{K_{n_1, n_2} \mid n_1 + n_2 = n, n_1, n_2 > 0\}$. Let n, k, t be positive integers such that k is even, $4 \leq k < n$, and $1 \leq t \leq \frac{k}{2} - 1$. Let p, n_j, p_j $(1 \leq j \leq t)$ be integers such that p_j is even, $n_j \geq p_j > 1$ $(1 \leq j \leq t)$, $\sum_{j=1}^{t} n_j + p = 2 = n$. Let $B_{n, k}$ be a graph of order n created from $B_j \in \Phi_{n_j}^{(n_j)}$ $(j = 1, 2, \ldots, t)$, pK_1 and K_2 (suppose $V(K_2) = \{u, v\}$) by connecting v to all vertices of pK_1 and to all vertices in one partite set of B_j $(j = 1, 2, \ldots, t)$ (also see Figure 1.).

THEOREM 2.5. Let G be a bipartite graph (resp. connected graph) of order n with pendent vertices. Then $\eta(G) = n - k$ (k is even and $4 \leq k < n$) if and only if G is isomorphic to $B_{n, k}\{E^*\}$ (resp. $\widetilde{B}_{n, k}\{E^*\}$), where $E^* = \bigcup_{j=1}^{t} E(B_j) \cup \{uv\}$.

Proof. Note that $B_{n, k}\{E^*\}$ (resp. $\widetilde{B}_{n, k}\{E^*\}$) is a bipartite graph. The proof is now analogous to that of Theorem 2.2. \square

Let Q_4 be a graph of order n created from K_{n_1, n_2}, pK_1 and K_2 (suppose $V(K_2) = \{u, v\}$) with $n_1 + n_2 + p + 2 = n$ and $n_1, n_2 > 0, p \geq 0$ by connecting v to all vertices of pK_1 and all vertices in one partite set of K_{n_1, n_2}. Let Q_4 be a graph of order n created from $O_{m_1}O_{m_2}, O_{m_3}O_{m_4}, pK_1$ and K_2 ($V(K_2) = \{u, v\}$) with $m_i > 0$ $(i = 1, 2, 3, 4), p \geq 0$ and $\sum_{i=1}^{4} m_i + p + 2 = n$ by connecting v to all vertices of O_{m_1} (or O_{m_2}), O_{m_3} (or O_{m_4}) and pK_1. Let Q_5 be a graph of order n created from $O_{m_1}O_{m_2}O_{m_3}O_{m_4}, pK_1$ and K_2 ($V(K_2) = \{u, v\}$) with $m_i > 0$ $(i = 1, 2, 3, 4), p \geq 0$ and $\sum_{i=1}^{4} m_i + p + 2 = n$ by connecting v to all vertices of pK_1, O_{m_1}, O_{m_2} (or pK_1, O_{m_1}, O_{m_2}). Let Q_6 be a graph of order n created from $O_{m_1}O_{m_2}O_{m_4}O_{m_5}, pK_1$ and K_2 ($V(K_2) = \{u, v\}$) with $m_i > 0$ $(i = 1, 2, 3, 4, 5), p \geq 0$ and $\sum_{i=1}^{5} m_i + p + 2 = n$ by connecting v to all vertices of $pK_1, O_{m_1}, O_{m_2}, O_{m_3}$ (or pK_1, O_{m_2}, O_{m_3}) (see Figure 3.).

![Graphs with Pendent Vertices and Given Nullity](image-url)
Corollary 2.6. Let G be a bipartite graph (resp. connected graph) of order n with pendent vertices. Then

(1) $\eta(G) = n - 4$ if and only if G is isomorphic to $Q_3\{E^*\}$ (resp. $\tilde{Q}_3\{E^*\}$), where $E^* = E(K_{n_1, n_2}) \cup \{uv\}$.

(2) $\eta(G) = n - 6$ if and only if G is isomorphic to $Q_4\{E_1^*\}$, $Q_5\{E_2^*\}$ or $Q_6\{E_3^*\}$ (resp. $Q_4\{E_1^*\}$, $Q_5\{E_2^*\}$ or $Q_6\{E_3^*\}$), where $E_1^* = E(O_{m_1}O_{m_2}) \cup E(O_{m_3}O_{m_4}) \cup \{uv\}$, $E_2^* = E(O_{m_1}O_{m_2}O_{m_3}O_{m_4}) \cup \{uv\}$, $E_3^* = E(O_{m_1}O_{m_2}O_{m_3}O_{m_4}O_{m_5}) \cup \{uv\}$.

Proof. (1) Note that $\eta(G) = n - 4$ implies $t = 1$, $p_1 = 2$. Since $\Phi_n^{(n-2)} = \{K_{n_1, n_2} | n_1 + n_2 = n$, and $n_1, n_2 > 0\}$, by Theorem 2.5, the result follows.

(2) Notice that $\eta(G) = n - 6$ implies the following two cases: Case 1. $t = 1$, $p_1 = 4$: Case 2. $t = 2$, $p_1 = 2$, $p_2 = 2$. By Lemma 1.3, we have $\Phi_n^{(n-4)} = \{O_{m_1}O_{m_2}O_{m_3}O_{m_4}, O_{m_1}O_{m_2}O_{m_3}O_{m_4}O_{m_5}\}$, $\Phi_n^{(n-2)} = \{O_{m_1}O_{m_2}\}$ (Here $\sum m_i = n$).

Thus the results are obtained by applying Theorem 2.5 to Cases 1 and 2. \square

3. The minimum and maximum (connected) graphs with pendent vertices and nullity η. In this section, we shall determine the number $e_{\min}^{(\eta)}$, $e_{\max}^{(\eta)}$, $	ilde{e}_{\min}^{(\eta)}$, $\tilde{e}_{\max}^{(\eta)}$ and characterize $G_{\min}^{(\eta)}$, $G_{\max}^{(\eta)}$, $	ilde{G}_{\min}^{(\eta)}$, $\tilde{G}_{\max}^{(\eta)}$ for $0 < \eta \leq n$.

Note that there exists no graph G of order n with pendent vertices and nullity $\eta(G) = n$, $n - 1$, $n - 3$ by Lemma 2.1, so we exclude these three cases.

Theorem 3.1. $G_{\min}^{(n-2k)} \cong kK_2 \cup (n - 2k)K_1$, $e_{\min}^{(n-2k)} = k$, where $k = 1$, 2, ..., $\lfloor \frac{n}{2} \rfloor$.

Proof. Suppose $|E(G_{\min}^{(n-2k)})| = i$ and there are j nontrivial connected components G_{11}, G_{12}, ..., G_{1j} of $G_{\min}^{(n-2k)}$. Then $j \leq i$.

Claim 1. $|E(G_{11})| = k$. By contradiction, suppose $i < k - 1$.

Note that $|V(G_{1t})| \leq |E(G_{1t})| + 1$ (t = 1, 2, ..., j). It follows that

$$r(G_{\min}^{(n-2k)}) = \sum_{t=1}^{j} r(G_{1t}) \leq \sum_{t=1}^{j} |V(G_{1t})| \leq \sum_{t=1}^{j} |E(G_{1t})| + j = i + j \leq 2k - 2.$$
Hence $\eta(G_{\min}^{(n-2k)}) = n - r(G_{\min}^{(n-2k)}) \geq n - 2k + 2$, a contradiction.

Hence $i \geq k$. Note that $\eta(kK_2 \cup (n-2k)K_1) = n - 2k$, and $|E(kK_2 \cup (n-2k)K_1)| = k$, then we have $|E(G_{\min}^{(n-2k)})| = k$.

Claim 2. There are k nontrivial connected components of $G_{\min}^{(n-2k)}$.

Since $|E(G_{\min}^{(n-2k)})| = k$, we have $j \leq k$. Assume that $j \leq k - 1$.

Notice that $|V(G_{1t})| \leq |E(G_{1t})| + 1 \ (t = 1, 2, \ldots, j)$, hence

$$r(G_{\min}^{(n-2k)}) = \frac{\sum_{i=1}^{j} r(G_{1t}) \leq \sum_{i=1}^{j} |E(G_{1t})| + j = k + j \leq 2k - 1.}$$

It is a contradiction that $n - 2k = \eta(G_{\min}^{(n-2k)}) = n - r(G_{\min}^{(n-2k)}) \geq n - 2k + 1$.

Hence $j = k$. Combining Claims 1 and 2, $G_{\min}^{(n-2k)}$ is isomorphic to a graph with k edges and k nontrivial connected components. Clearly, $G_{\min}^{(n-2k)} \cong kK_2 \cup (n-2k)K_1$, and $e_{\min}^{(n-2k)} = |E(G_{\min}^{(n-2k)})| = k$, where $k = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$.

Theorem 3.2. $G_{\min}^{(n-2k-1)} \cong K_3 \cup (k-1)K_2 \cup (n-2k-1)K_1$, and $e_{\min}^{(n-2k-1)} = k + 2$, where $k = 2, 3, \ldots, \left\lfloor \frac{n-1}{2} \right\rfloor$.

Proof. Suppose that $|E(G_{\min}^{(n-2k-1)})| = i$ and there are j nontrivial connected components $G_{11}, G_{12}, \ldots, G_{1j}$ of $G_{\min}^{(n-2k-1)}$.

Claim 1. There are at most k nontrivial connected components of $G_{\min}^{(n-2k-1)}$.

By contradiction, suppose $j \geq k + 1$. By Lemma 1.4, $\eta(G_{1t}) \leq |V(G_{1t})| - 2 \ (t = 1, 2, \ldots, j)$ and $\eta(G_{\min}^{(n-2k-1)}) = \sum_{i=1}^{j} \eta(G_{1t}) + z$, where z is the number of isolated vertices of $G_{\min}^{(n-2k-1)}$. Hence $n - 2k - 1 = \eta(G_{\min}^{(n-2k-1)}) = \sum_{i=1}^{j} \eta(G_{1t}) + z \leq \sum_{i=1}^{j} |V(G_{1t})| - 2 + z \leq n - 2j \leq n - 2k - 2$, a contradiction.

Claim 2. $|E(G_{\min}^{(n-2k-1)})| = k + 2$.

Note that $|V(G_{1t})| \leq |E(G_{1t})| + 1 \ (t = 1, 2, \ldots, j)$. Thus

$$r(G_{\min}^{(n-2k-1)}) = \sum_{i=1}^{j} r(G_{1t}) \leq \sum_{i=1}^{j} |V(G_{1t})| \leq \sum_{i=1}^{j} |E(G_{1t})| + j = i + j.$$

It follows that

$$n - 2k - 1 = \eta(G_{\min}^{(n-2k-1)}) = n - r(G_{\min}^{(n-2k-1)}) \geq n - i - j.$$

Hence $i + j \geq 2k + 1$. Since $j \leq k$ by Claim 1, we have $i \geq k + 1$.

If $i = k + 1$, then $j = k$. Thus $G_{\min}^{(n-2k-1)} \cong K_1 \cup (k-1)K_2 \cup (n-2k-1)K_1$. However, $\eta(K_1 \cup (k-1)K_2 \cup (n-2k-1)K_1) = n - 2k \neq n - 2k - 1$.

Thus \(i \geq k + 2 \). Note that \(\eta(K_3 \cup (k - 1)K_2 \cup (n - 2k - 1)K_1) = n - 2k - 1 \), and \(|E(K_3 \cup (k - 1)K_2 \cup (n - 2k - 1)K_1)| = k + 2 \). Then \(|E(G_{\min}^{(n-2k-1)})| = k + 2 \).

By Claim 2, \(|E(G_{\min}^{(n-2k-1)})| = i = k + 2 \), and it follows that \(i + j = (k + 2) + j \geq 2k + 1 \). Combining this with Claim 1, we have \(j = k - 1 \) or \(k \).

\textbf{Case 1.} \(j = k - 1 \). First we show that there is no nontrivial connected components which are isomorphic to \(P_3 \). Suppose to the contrary that \(G_{11} \cong P_3 \).

Note that \(r(P_3) = 2 \) by Lemma 1.6 and \(\sum_{t=2}^{j} |E(G_{11})| = k \). Hence

\[
r(G_{\min}^{(n-2k-1)}) = r(P_3) + \sum_{t=2}^{j} r(G_{11}) \\
\leq r(P_3) + \sum_{t=2}^{j} |V(G_{11})| \leq r(P_3) + \sum_{t=2}^{j} |E(G_{11})| + (j - 1) = 2k.
\]

Thus \(n - 2k - 1 = \eta(G_{\min}^{(n-2k-1)}) = n - r(G_{\min}^{(n-2k-1)}) \geq n - 2k \), a contradiction.

Therefore, \(G_{\min}^{(n-2k-1)} \) may be isomorphic to one of the following:

1. \(T_1 = C_4 \cup (k - 2)K_2 \cup (n - 2k)K_1 \);
2. \(T_2 = P_4 \cup (k - 2)K_2 \cup (n - 2k - 1)K_1 \);
3. \(T_3 = T^* \cup (k - 2)K_2 \cup (n - 2k)K_1 \), where \(T^* \) is a graph of order 4 created from \(C_3 \) and \(K_2 \) by identifying a vertex of \(C_3 \) with a vertex of \(K_2 \);
4. \(T_4 = T^{**} \cup (k - 2)K_2 \cup (n - 2k - 1)K_1 \), where \(T^{**} \) is a graph of order 5 created from \(K_2 \) and \(S_3 \) by connecting the center of \(S_3 \) to a vertex of \(K_2 \);
5. \(T_5 = S_5 \cup (k - 2)K_2 \cup (n - 2k - 1)K_1 \).

By Lemmas 1.4 and 1.6, we get \(\eta(T_1) = \eta(T_3) = n - 2k + 2 \neq n - 2k - 1 \), \(\eta(T_2) = \eta(T_4) = n - 2k \neq n - 2k - 1 \). Hence \(j \neq k - 1 \).

\textbf{Case 2.} \(j = k \). \(G_{\min}^{(n-2k-1)} \) may be isomorphic to one of the following:

1. \(U_1 = K_3 \cup (k - 1)K_2 \cup (n - 2k - 1)K_1 \);
2. \(U_2 = K_1, 3 \cup (k - 1)K_2 \cup (n - 2k - 2)K_1 \);
3. \(U_3 = P_4 \cup (k - 1)K_2 \cup (n - 2k - 2)K_1 \);
4. \(U_4 = 2K_1, 2 \cup (k - 2)K_2 \cup (n - 2k - 2)K_1 \).

It is not difficult to check that \(\eta(U_1) = n - 2k - 1 \), \(\eta(U_2) = \eta(U_4) = n - 2k \neq n - 2k - 1 \), \(\eta(U_3) = n - 2k - 2 \neq n - 2k - 1 \).
Graphs with Pendent Vertices and Given Nullity

All in all, \(G_{min}^{(n-2k-1)} \cong U_1 = K_3 \cup (k-1)K_2 \cup (n-2k-1)K_1 \), and \(e_{min}^{(n-2k-1)} = k + 2 \), where \(k = 2, 3, \ldots, \left\lfloor \frac{n-1}{2} \right\rfloor \).\(\Box \)

Let \(S_{n_j} \) be a star of order \(n_j \), where \(j = 1, 2, \ldots, k \) and \(\sum_{j=1}^{k} n_j = n \). Let \(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k} \) denote a tree of order \(n \) created from \(S_{n_j} (j = 1, 2, \ldots, k) \) by adding \(k-1 \) edges to connect these stars, but the connection of two non-center vertices (not the center of a star) is not permitted. It is easy to see that \(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_p} \) (\(2 \leq p \leq k \)) can be constructed recurrently by connecting the center of \(S_{n_p} \) to one vertex of \(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{p-1}} \).

Now \(G_{min}^{(n-2k)} \) can be characterized for \(k = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \) as follows.

Theorem 3.3. \(G_{min}^{(n-2k)} \cong S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k} \), where \(\sum_{j=1}^{k} n_j = n \) and \(k = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \).

Proof. On one hand, by the definition of \(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k} \), there is a pendent vertex \(u_{n_k} \) which is adjacent to the center of \(S_{n_k} \). Then

\[
\eta(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k}) = \eta(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-1}}) + \eta((n_k-2)K_1) = \eta(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-1}}) + (n_k-2) = \cdots = \eta(S_{n_1}) + \sum_{i=2}^{k} (n_i-2) = n - 2k.
\]

On the other hand, we prove that \(G_{min}^{(n-2k)} \) is isomorphic to \(S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k} \) by induction on \(k \), where \(\sum_{j=1}^{k} n_j = n \) and \(k = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \).

For \(k = 1 \), by Lemma 2.1, \(G_{min}^{(n-2)} \cong S_n \). Thus, the statement holds in this case. Suppose the statement holds for \(k \leq p-1 \). Now we consider the case of \(k = p \), where \(2 \leq p \leq \left\lfloor \frac{n}{2} \right\rfloor \).

Claim 1. It’s obvious that for any connected graph of order \(n \), the minimum connected graph is a tree which has \(n-1 \) edges.

Claim 2. If \(T \) is a tree of order \(n \) with \(\eta(T) = n - l \), then \(l \) is even.

Note that a tree \(T \) could be decomposed into \(t \) (with possibly \(t = 0 \)) isolated vertices by deleting a pendent vertex and its adjacent vertex from \(T \) (and its resultant graph, suppose \(s \) times) recurrently. Hence \(r(T) = r(tK_1) + 2s = 2s \), and then \(\eta(T) = n - r(T) = n - 2s \). Therefore, \(l = 2s \) is even.

Notice that \(G_{min}^{(n-2p)} \) has pendent vertices and \(\eta(G_{min}^{(n-2p)}) = n - 2p \). Choose a pendent vertex, say \(x \), in \(G_{min}^{(n-2p)} \). Let \(N(x) = \{y\} \). Delete \(x \), \(y \) from \(G_{min}^{(n-2p)} \), and
let the resultant graph be $\tilde{G}_1 = \tilde{G}_{11} \cup \tilde{G}_{12} \cup \cdots \cup \tilde{G}_{1q} \cup zK_1$, where \tilde{G}_{1j} are nontrivial connected components of order $n_j^* (j = 1, 2, \ldots, q)$, and $\sum_{j=1}^{q} n_j^* + z + 2 = n$.

By the definition of $\tilde{G}^{(n-2p)}_{\min}$ and Claim 1, each nontrivial connected component \tilde{G}_{1j} should be a tree with $n_j^* - 1$ edges $(j = 1, 2, \ldots, q)$. Moreover, it follows from Claim 2 that we suppose $\eta(\tilde{G}_{1j}) = n_j^* - p_j$, where p_j is even and $0 < p_j \leq n_j^*$ $(1 \leq j \leq q)$. By Theorem 2.2, we have $\sum_{j=1}^{q} p_j + 2 = 2p$.

Let $p_j = 2k_j$, and then $k_j = \frac{p_j}{2} \leq p - 1 \ (j = 1, 2, \ldots, q)$. According to the inductive assumption, since $\eta(\tilde{G}_{1j}) = n_j^* - 2k_j$, each \tilde{G}_{1j} is isomorphic to $S_{n_{1j}^*} \oplus S_{n_{2j}^*} \oplus \cdots \oplus S_{n_{k_j}^*}$, where $\sum_{i=1}^{k_j} n_{ji}^* = n_j^* \ (1 \leq j \leq q)$.

In order to recover the connected graph $\tilde{G}^{(n-2p)}_{\min}$, to add x, y to \tilde{G}_1, we need to insert edges from x to each of z isolated vertices of G_1 and x. This gives a star $K_1, z+1 = S_{z+2}$. Moreover, we shall connect the vertex y (namely, the center of S_{z+2}) to one vertex of each \tilde{G}_{1j} $(j = 1, 2, \ldots, q)$. So $\tilde{G}^{(n-2p)}_{\min}$ is a tree of order n created from $S_{n_{ji}^*} \ (i = 1, 2, \ldots, k_j; \ j = 1, 2, \ldots, p)$ and S_{z+2} by adding $\sum_{j=1}^{q} k_j = p - 1$ edges to connect these stars, and any two non-center vertices are not connected since y is the center of S_{z+2}.

All in all, it follows from the induction that $\tilde{G}^{(n-2k)}_{\min} \cong S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k}$, and then $\tilde{c}^{(n-2k)}_{\min} = n - 1$, where $\sum_{j=1}^{k} n_j = n$ and $k = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$.

Let C_{2h+1} be a $(2h+1)$-cycle and let S_{n_j} be a star of order n_j, where $1 \leq h < k$, $1 \leq j \leq k - h$ and $(2h + 1) + \sum_{j=1}^{k-h} n_j = n$. Let $C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-h}}$ denote a unicyclic connected graph of order n created from $C_{2h+1} (1 \leq h < k)$ and $S_{n_j} (j = 1, 2, \cdots, k-h)$ by adding $k-h$ edges to connect them, but the connection of two non-center vertices is not permitted. It is easy to see that $C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_p}$ $(1 \leq p \leq k - h)$ can be constructed recurrently by connecting the center of S_{n_p} to one vertex of $C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{p-1}}$.

Theorem 3.4. $\tilde{G}^{(n-2k-1)}_{\min} \cong C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-h}}$, $\tilde{c}^{(n-2k-1)}_{\min} = n$, where $1 \leq h < k$, $(2h + 1) + \sum_{j=1}^{k-h} n_j = n$ and $k = 2, 3, \ldots, \left\lfloor \frac{n-1}{2} \right\rfloor$.

Proof. By the definition of $C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-h}}$,

$$
\eta(C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-h}}) = \eta(C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_{k-h-1}}) + \eta((n_{k-h-2})K_1)
$$

$$
= \cdots = \eta(C_{2h+1}) + \sum_{i=1}^{k-h} (n_i - 2) = 0 + (\sum_{i=1}^{k-h} n_i - 2k + 2h) = n - 2k - 1.
$$

On the other hand, we show that $\tilde{G}^{(n-2k-1)}_{\min}$ is isomorphic to $C_{2h+1} \oplus S_{n_1} \oplus \cdots \oplus S_{n_{k-h}}$ by induction on k, where $1 \leq h < k$ and $(2h + 1) + \sum_{j=1}^{k-h} n_j = n$.

For $k = 2$, we have $h = 1$, and it follows from Corollary 2.3 (2) that $\tilde{G}^{(n-3)}_{\min} \cong$
Claim 1. One of the nontrivial connected components (suppose \tilde{G}_{11}) is an unicyclic connected graph, and others are trees.

If all \tilde{G}_{1j} are trees, then $l_j^* \ (j = 1, 2, ..., q)$ is even by Theorem 3.3 Claim 2, and

$$2p + 1 = n - \eta(\tilde{G}_{\text{min}}^{(n-2p-1)}) = n - \left[\sum_{j=1}^{q} \eta(\tilde{G}_{1j}) + 2 \right] = 2 + \sum_{j=1}^{q} l_j^*,$$

a contradiction. Since the number of edges for $\tilde{G}_{\text{min}}^{(n-2p-1)}$ should be as least as possible, and $C_{2h+1} \oplus S_{n_1} \oplus \cdots \oplus S_{n_{p-h}}$ with nullity $n - 2p - 1$ which satisfies this claim, it follows that Claim 1 holds.

Claim 2. l_1^* is odd. Otherwise, we get a similar contradiction as Claim 1.

Claim 3. Let $l_1^* = 2t^* + 1$. Then $\tilde{G}_{11} \cong C_{2t^*+1} \ (n_1^* = 2t^* + 1)$, or $\tilde{G}_{11} \cong C_{2h+1} \oplus S_{n_{r_1}^*} \oplus \cdots \oplus S_{n_{r_{h-1}}^*}$, where $1 \leq h_1 < t^*$, $(2h_1 + 1) + \sum_{j=1}^{t^* - h_1} n_{1j}^* = n_1^*$.

Case 1. If \tilde{G}_{11} has pendent vertices, since $t^* = \lfloor \frac{l_1^* - 1}{2} \rfloor \leq p - 1$ (note that $\sum_{j=1}^{q} l_j^* = 2p - 1$) and $\eta(\tilde{G}_{11}) = n_1^* - 2t^* - 1$, according to the inductive assumption, $\tilde{G}_{11} \cong C_{2h+1} \oplus S_{n_{r_1}^*} \oplus \cdots \oplus S_{n_{r_{h-1}}^*}$, where $1 \leq h_1 < t^*$, $(2h_1 + 1) + \sum_{j=1}^{t^* - h_1} n_{1j}^* = n_1^*$.

Case 2. If \tilde{G}_{11} has no pendent vertex, since \tilde{G}_{11} is an unicyclic connected graph, \tilde{G}_{11} is an odd cycle of order n_1^*. Hence $\tilde{G}_{11} \cong C_{2t^*+1}$ and $l_1^* = 2t^* + 1 = n_1^*$.

Claim 4. Combining Claim 1 with Theorem 3.3, each \tilde{G}_{1j} $(2 \leq j \leq q)$ is isomorphic to $S_{n_{r_1}^*} \oplus S_{n_{r_2}^*} \oplus \cdots \oplus S_{n_{r_k}^*}$, where $\sum_{i=1}^{k} n_{j_i}^* = n_j^*$ and $l_j^* = 2k_j$.

In order to recover the connected graph $\tilde{G}_{\text{min}}^{(n-2p-1)}$, to add x, y to \tilde{G}_1, we insert edges from y to each of z isolated vertices of \tilde{G}_1 and x. This gives a star $K_1, z+1 = S_{z+2}$. Moreover, we shall connect the vertex y (namely, the center of S_{z+2}) to one vertex of each \tilde{G}_{1j} $(j = 1, 2, ..., q)$. Let $t^* - h_1 = k_1$. Then $\tilde{G}_{\text{min}}^{(n-2p-1)}$ is an unicyclic connected graph of order n created from C_{2h+1}, $S_{n_{r_1}^*}$, $(i = 1, 2, ..., k_j; \ j = 1, 2, ..., p)$ and S_{z+2} by adding $\sum_{j=1}^{q} k_j + 1 = p - h_1$.
(1 \leq h_1 < p) edges to connect these graphs, and any two non-center vertices are not connected since y is the center of S_{z+2}.

In conclusion,
\[\tilde{G}_{\min}^{(n-2k-1)} \cong C_{2h+1} \oplus S_{n_1} \oplus S_{n_2} \oplus \cdots \oplus S_{n_k}, \]
and then $\tilde{e}_{\min}^{(n-2k-1)} = n$, where $1 \leq h < k$, $(2h + 1) + \sum_{j=1}^{k-h} n_j = n$ and $k = 2, 3, \ldots, \lfloor \frac{n-1}{2} \rfloor$. \(\square\)

The following lemma describes the relationship between $G_{\max}^{(n)}$ and $\tilde{G}_{\max}^{(n)}$.

Lemma 3.5. $G_{\max}^{(n)} \cong \tilde{G}_{\max}^{(n)}$, $e_{\max}^{(n)} = \tilde{e}_{\max}^{(n)}$, where $0 < \eta \leq n$.

Proof. Since we want to insert edges as many as possible, by Lemma 2.1 and Theorem 2.2, this lemma is proved. \(\square\)

Now $G_{\max}^{(n)}$ (namely, $\tilde{G}_{\max}^{(n)}$) is characterized for $\eta = n - 2$, $n - 4$, $n - 5$.

Theorem 3.6. $G_{\max}^{(n-2)} \cong \tilde{G}_{\max}^{(n-2)} \cong S_n$, $e_{\max}^{(n-2)} = \tilde{e}_{\max}^{(n-2)} = n - 1$.

Proof. By Lemma 2.1 (2), we obtain the results as desired. \(\square\)

Let $U_{\max}^{(n-4)}$ be a graph of order n created from $K_{[\frac{n}{2}]-1}$, $[\frac{n}{2}]-1$ and K_2 by connecting a vertex v of K_2 to all vertices of $K_{[\frac{n}{2}]-1}$, $[\frac{n}{2}]-1$.

Theorem 3.7. $G_{\max}^{(n-4)} \cong \tilde{G}_{\max}^{(n-4)} \cong U_{\max}^{(n-4)}$, $e_{\max}^{(n-4)} = \tilde{e}_{\max}^{(n-4)} = [\frac{n^2}{4}]$.

Proof. By Corollary 2.3 (1), $G_{\max}^{(n-4)}$ should be a graph Q_{\max} of order n created from K_{n_1}, n_2, pK_1 and K_2 such that $n_1 + n_2 + p = n$ and n_1, $n_2 > 0$, $p \geq 0$ by connecting a vertex v of K_2 to all vertices of pK_1 and K_{n_1}, n_2.

Since $n_2 = n - n_1 - p - 2$ and $n_1, n_2 > 0$, $p \geq 0$, we have
\[
|E(Q_{\max})| = n_1n_2 + n - 1 = -n_1^2 + (n - p - 2)n_1 + (n - 1)
\leq -n_1^2 + (n - 2)n_1 + (n - 1)
\leq n_1^2 + n_2^2 + \begin{cases} \frac{n^2}{4}, & n \text{ is even}; \\ \frac{n^2-1}{4}, & n \text{ is odd}. \end{cases}
\]

where the first equality holds if and only if $p = 0$, and the second equality holds if and only if $n_1 = \frac{n}{2} - 1$ (n is even); $n_1 = \frac{4n}{n+1} - 1$ or $\frac{4n}{n-1} - 1$ (n is odd), which implies that $n_2 = \frac{p}{2} - 1$ (n is even); $n_2 = \frac{n+1}{2} - 1$ or $\frac{n-1}{2} - 1$ (n is odd).

Combining Lemma 3.5, it follows that $G_{\max}^{(n-4)} \cong \tilde{G}_{\max}^{(n-4)} \cong U_{\max}^{(n-4)}$.
Moreover, \(e^{(n-4)}_{\text{max}} = e^{(n-4)}_{\text{max}} = \begin{cases} \frac{n^2}{4}, & n \text{ is even;} \\ \frac{n^2-1}{4}, & n \text{ is odd.} \end{cases} \)

Let \(U^{(n-5)}_{\text{max}} \) be a graph of order \(n \) created from
\[
U^* = \begin{cases} \begin{array}{ll}
K_{\frac{n+2}{3}, \frac{n+2}{3}, \frac{n+2}{3}}, & n \equiv 2 \pmod{3} \\
K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}, & n \equiv 0 \pmod{3} \\
K_{\frac{n-4}{3}, \frac{n-4}{3}, \frac{n-4}{3}}, & n \equiv 1 \pmod{3}
\end{array}\end{cases}
\]
and \(K_2 \) by connecting a vertex \(v \) of \(K_2 \) to all vertices of \(U^* \).

Theorem 3.8. \(G^{(n-5)}_{\text{max}} \cong G^{(n-5)}_{\text{max}} \cong U^{(n-5)}_{\text{max}} \), \(e^{(n-5)}_{\text{max}} = e^{(n-5)}_{\text{max}} = \left\lfloor \frac{n^2-n+1}{4} \right\rfloor \).

Proof. By Corollary 2.3 (2), \(G^{(n-5)}_{\text{max}} \) is isomorphic to a graph \(C^{\text{max}} \) of order \(n \) created from \(K_{n_1, n_2, n_3} \), \(pK_1 \) and \(K_2 \) satisfying \(n_1 + n_2 + n_3 + p + 2 = n \) and \(n_1, n_2, n_3 > 0, p \geq 0 \) by connecting a vertex \(v \) of \(K_2 \) to all vertices of \(pK_1 \) and \(K_{n_1, n_2, n_3} \).

Since \(n_3 = n - n_1 - n_2 - p - 2 \) and \(n_1, n_2, n_3 > 0, p \geq 0 \), we have
\[
\left| E(C^{\text{max}}) \right| = n_1 n_2 + n_2 n_3 + n_3 n_1 + n - 1
\]
\[
= -(n_1 + n_2)^2 + (n - 2 - p)(n_1 + n_2) + (n - 1) + n_1 n_2
\]
\[
\leq -(n_1 + n_2)^2 + (n - 2 - p)(n_1 + n_2) + (n - 1) + \frac{(n_1 + n_2)^2}{4}
\]
\[
= \frac{3}{4}(n - n_3 - p - 2)^2 + (n - 2 - p)(n - n_3 - p - 2) + (n - 1)
\]
\[
= \frac{1}{4}(-3n_3^2 + 2(n - p - 2)n_3 + (n - p - 2)^2) + (n - 1)
\]
\[
\leq \frac{1}{4}(-3n_3^2 + 2(n - 2)n_3 + (n - 2)^2) + (n - 1)
\]
\[
= \frac{3}{4}(n_3 - \frac{n - 2}{3})^2 + \frac{n^2 - n + 1}{3} \leq \begin{cases} \frac{n^2-n+1}{3}, & n - 2 \equiv 0 \pmod{3}; \\ \frac{n^2-3}{3}, & n - 2 \equiv 0 \pmod{3}, \end{cases}
\]
where the first equality holds if and only if \(n_1 = n_2 \), the second equality holds if and only if \(p = 0 \), and the third equality holds if and only if
\[
n_3 = \begin{cases} \frac{n-2}{3}, & n - 2 \equiv 0 \pmod{3}; \\ \frac{n}{3}, & n - 2 \equiv 1 \pmod{3}; \\ \frac{n+2}{3}, & n - 2 \equiv 2 \pmod{3}.
\end{cases}
\]

Thus \(n_1 = n_2 = \begin{cases} \frac{n-2}{3}, & n - 2 \equiv 0 \pmod{3}; \\ \frac{n-3}{3}, & n - 2 \equiv 1 \pmod{3}; \\ \frac{n-1}{3}, & n - 2 \equiv 2 \pmod{3}.
\end{cases} \)
Hence $G_{\text{max}}^{(n-5)} \cong U_{\text{max}}^{(n-5)}$ and then
\[
\varepsilon_{\text{max}}^{(n-5)} = \begin{cases}
\frac{n^2-n+1}{3}, & n - 2 \equiv 0 \pmod{3}; \\
\frac{n^2-n}{3}, & n - 2 \not\equiv 0 \pmod{3}.
\end{cases}
\]

Combining this with Lemma 3.5 gives the desired results. \(\blacksquare\)

Acknowledgment. The authors are grateful to the referees for their valuable comments and for useful suggestions resulting in the improved readability of this paper.

REFERENCES