Characterization of P-Property for some Z-Transformations on positive semidefinite cone

R. Balaji
CHARACTERIZATION OF P-PROPERTY FOR SOME Z-TRANSFORMATIONS ON POSITIVE SEMIDEFINITE CONE*

R. BALAJI1

Abstract. The P-property of the following two Z-transformations with respect to the positive semidefinite cone is characterized:

(i) $I - S$, where $S : S^{n\times n} \to S^{n\times n}$ is a nilpotent linear transformation,
(ii) $I - L_A^{-1}$, where L_A is the Lyapunov transformation defined on $S^{n\times n}$ by $L_A(X) = AX + XA^T$.(Here $S^{n\times n}$ denotes the space of all symmetric $n \times n$ matrices and I is the identity transformation.)

Key words. P-property, Stein-type transformations, Lyapunov transformations.

AMS subject classifications. 90C33, 17C55.

1. Introduction. An $n \times n$ matrix is said to be a Z-matrix if all the off-diagonal entries are non-positive. Several interesting properties on Z-matrices can be found in [1]. For a square matrix of order n, by an easy verification, we find that the following are equivalent:

1. A is a Z-matrix.
2. If $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ then,
 $$x \geq 0, \quad y \geq 0 \quad (\text{entrywise non-negative}), \quad \text{and} \quad x^T y = 0 \implies y^T A x \leq 0.$$

Motivated by the above fact, we consider Z-transformations with respect to positive semidefinite cone.

Let $S^{n\times n}$ be the vector space of $n \times n$ symmetric matrices with real entries. A linear transformation $L : S^{n\times n} \to S^{n\times n}$ is called a Z-transformation with respect to the positive semidefinite cone if

$$X \succeq 0, \quad Y \succeq 0 \quad \text{and} \quad XY = 0 \implies \langle L(X), Y \rangle := \text{trace}(L(X)Y) \leq 0.$$(Here $X \succeq 0$ means X is symmetric and positive semidefinite.) Significances of Z-transformations (especially in mathematical programming) can be found in [2]. An important result on Z-transformations is the following:

*Received by the editors on April 29, 2011. Accepted for publication on October 4, 2011. Handling Editor: Michael Tsatsomeros.
1Department of Mathematics, Indian Institute of Technology-Madras, Chennai-36, India (balaji5@iitm.ac.in).

1020
Theorem 1.1 (Theorem 6 [2]). Let $L : \mathbb{S}_n \times \mathbb{S}_n \to \mathbb{S}_n$ be a Z-transformation. Then the following are equivalent.

1. There exists a $X \succ 0$ such that $L(X) \succ 0$.
2. For every $Q \succeq 0$, there exists a unique $X \succeq 0$ such that $L(X) = Q$.
3. For every $Q \in \mathbb{S}_n$, there exists a $X \succeq 0$ such that $Y := L(X) + Q \succeq 0$ and $XY = 0$.

We will say that a transformation S (defined on \mathbb{S}_n) has the property (c) if:

$$X \succeq 0 \implies S(X) \succeq 0.$$

Transformations of the type $I - S$, where I is the identity transformation on \mathbb{S}_n and S is a linear transformation with property (c) are called Stein-type transformations. These transformations are important examples of Z-transformations. For a Stein-type transformation it is known that all the statements of Theorem 1.1 are equivalent to the condition $\rho(S) < 1$, where $\rho(S)$ is the spectral radius of S (see [3]).

A transformation $L : \mathbb{S}_n \to \mathbb{S}_n$ is said to have the P-property if the following condition is satisfied:

$$XL(X) = L(X)X \quad \text{and} \quad XL(X) \preceq 0 \implies X = 0.$$

One of the unsolved problems on Z-transformations (see [2]) is to show that all the items in Theorem 1.1 are equivalent to the condition that L has the P-property. Even for the Stein-type transformations, the problem remains unsolved. More precisely, if $I - S$ is a Stein-type transformation such that $\rho(S) < 1$, then the problem of determining whether $I - S$ has the P-property has no answer. It is natural to consider the simplest case, when $\rho(S) = 0$. In other words, assuming S is nilpotent, we ask whether the Stein-type transformation $I - S$ has the P-property. First, we settle this question in this paper.

If S is a Z-transformation satisfying any of the items in Theorem 1.1, we find that S^{-1} has property (c). We now ask whether $I - S^{-1}$ has the P-property if S is a Z-transformation with property (c) and such that $\rho(S^{-1}) < 1$. One of the well-studied Z-transformations is the Lyapunov transformation for which we know that all the items of Theorem 1.1 are equivalent to the fact that A is a positive stable matrix (See the definitions below for Lyapunov transformation and positive stable matrix). If $S = L_A^{-1}$, where L_A is the Lyapunov transformation corresponding to a positive stable matrix A with the property $\rho(L_A^{-1}) < 1$, then for the Stein-type transformation $I - L_A^{-1}$, we show that $I - L_A^{-1}$ has the P-property.

2. Preliminaries. All the matrices appearing here are assumed to be real. The following notations and definitions will be useful in the sequel.
Definition 2.1. Let A be a square matrix. Then A is said to be positive stable if every eigenvalue of A has a positive real part.

Definition 2.2. For a square matrix A, the corresponding Lyapunov transformation $L_A : \mathbb{S}^{n \times n} \to \mathbb{S}^{n \times n}$ is defined by $L_A(X) := AX + XA^T$.

If Q is an $n \times n$ matrix, and $\alpha = \{1, \ldots, k\}$ ($k < n$), $Q_{\alpha \alpha}$ will denote the $k \times k$ leading principal submatrix of Q.

Definition 2.3. Let $L : \mathbb{S}^{n \times n} \to \mathbb{S}^{n \times n}$ be a linear transformation. For any $\alpha = \{1, \ldots, k\}$, we define a linear transformation $L_{\alpha \alpha} : \mathbb{S}^{k \times k} \to \mathbb{S}^{k \times k}$ by

$$L_{\alpha \alpha}(Z) := [L(X)]_{\alpha \alpha} \quad (Z \in \mathbb{S}^{k \times k}),$$

where corresponding to $Z \in \mathbb{S}^{k \times k}$, $X \in \mathbb{S}^{n \times n}$ is the unique matrix such that

$$X_{ij} = \begin{cases} Z_{ij} & (i, j) \in \alpha \times \alpha \\ 0 & \text{else} \end{cases}.$$

We call $L_{\alpha \alpha}$ the principal subtransformation corresponding to α.

If $\beta \in \mathbb{R}$, then we define $\beta^+ := \max(\beta, 0)$ and $\beta^- := \max(-\beta, 0)$. Suppose D is a diagonal matrix with diagonal entries d_i. Then D^+ will denote the diagonal matrix whose diagonal entries are d_i^+. Similarly, D^- will denote the diagonal matrix whose entries are d_i^-. If $X \in \mathbb{S}^{n \times n}$, then there exists an orthogonal matrix U such that $UXU^T = D$, where D is diagonal. Now we define $X^+ := UD^+U^T$ and $X^- := UD^-U^T$. It is easy to see that for every $X \in \mathbb{S}^{n \times n}$, $X = X^+ - X^-; X^+$ and X^- are positive semidefinite.

We will use the fact that if T is a linear transformation on $\mathbb{S}^{n \times n}$ with property (c), then its spectral radius is an eigenvalue of T (see Theorem 0 in [4]).

Let $T : \mathbb{S}^{n \times n} \to \mathbb{S}^{n \times n}$ be a linear transformation. Then T is a nilpotent transformation if there exists a positive integer m such that $T^m = 0$.

3. Results. We prove our main results now.

3.1. Case 1. We intend to show that $I - S$ has the P-property if S is nilpotent and has property (c). The result is trivial if $S = 0$ and so in the rest of the discussion, we assume S is nonzero. Let ν be the least positive integer satisfying

$$(3.1) \quad S^\nu = 0, \quad \text{and} \quad S^{\nu-1} \neq 0.$$

First we prove the following basic lemma.

Lemma 3.1. Let S be a nilpotent transformation. Assume that S has property (c). Then the following are true:

(a) If $Q \succ 0$, then $Q \notin \text{Image}(S)$.
(b) If rank \(S(X) = m \), then there exists a \(P \succeq 0 \) such that rank \(S(P) \geq m \). In fact, if \(X \in \mathbb{S}^{n \times n} \), then

\[
\text{rank } S(X) \leq \text{rank } S(|X|),
\]

where \(|X| := X^+ + X^- \).

Proof. Let \(S \) satisfy (3.1). Suppose \(S(P) = Q \) for some \(Q \succ 0 \). If \(X \succeq 0 \), then there exists \(\epsilon > 0 \) such that \(Q - \epsilon X \succ 0 \). Since \(S \) has the property \((c)\) and satisfies (3.1), we have:

\[
(3.2) \quad S^{\nu-1}(Q - \epsilon X) + S^{\nu-1}(\epsilon X) = 0,
\]

\[
(3.3) \quad S^{\nu-1}(Q - \epsilon X) \succeq 0, \quad \text{and} \quad S^{\nu-1}(\epsilon X) \succeq 0.
\]

In view of (3.2) and (3.3), \(S^{\nu-1}(X) = 0 \). Therefore for any \(Y \in \mathbb{S}^{n \times n} \),

\[
S^{\nu-1}(Y) = S^{\nu-1}(Y^+) - S^{\nu-1}(Y^-) = 0
\]

and so \(S^{\nu-1} = 0 \) which is a contradiction to (3.1). This proves (a).

For any two positive semidefinite matrices \(U \) and \(V \) in \(\mathbb{S}^{n \times n} \),

\[
\text{rank}(U - V) \leq \text{rank}(U + V).
\]

The above inequality can be proved as follows. Let \(x \in \mathbb{R}^n \) be an element in the null space of \(U + V \). This gives \(Ux = -Vx \) and thus, \(x^TUx = -x^TVx \). Since \(U \) and \(V \) are symmetric and positive semidefinite, we get \(Ux = 0 = Vx \) and thus,

\[
\text{nullity } (U + V) \leq \text{nullity } (U - V).
\]

By rank nullity theorem, (3.4) follows.

By setting \(U = S(X^+) \) and \(V = S(X^-) \) in (3.4), we find from the property \((c)\) of \(S \) that the positive semidefinite matrix \(P := X^+ + X^- \) satisfies \(m \leq \text{rank } S(P) \). This proves (b). \(\square \)

We now prove the first main result.

Theorem 3.2. Suppose \(S : \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n} \) is a nilpotent transformation with property \((c)\). Then \(I - S \) has the \(P \)-property.

Proof. We prove the result by induction on \(n \). If \(n = 2 \), the result is true (see Theorem 13 in [2]). For \(k < n \), we will assume that the result holds and now we prove for \(k = n \). Let \(Q_0 \in \mathbb{S}^{n \times n} \) be such that

\[
\text{rank } S(Q_0) \geq \text{rank } S(Q) \quad \text{for all } Q \in \mathbb{S}^{n \times n}.
\]
In view of Item (b) in Lemma 3.1, without any loss of generality, we assume \(Q_0 \succeq 0 \).
If \(\hat{k} = \text{rank} S(Q_0) \), then Item (a) of Lemma 3.1 implies \(\hat{k} < n \).
There exists an orthogonal matrix \(U \) such that
\[
US(Q_0)U^T = \begin{bmatrix}
D & 0 \\
0 & 0
\end{bmatrix},
\]
\(D \in S^{\hat{k} \times \hat{k}} \) being diagonal and nonsingular. Define \(\tilde{S} : S^{n \times n} \to S^{n \times n} \) by
\[
\tilde{S}(X) := US(U^TXU)U^T.
\]
If \(\hat{Q}_0 = UQ_0U^T \), then
\[
\tilde{S}(\hat{Q}_0) = \begin{bmatrix}
D & 0 \\
0 & 0
\end{bmatrix}.
\]
By an easy verification, we find that \(\tilde{S} \) is nilpotent and has property (c). Further,
\[
(3.5) \quad \text{rank} \tilde{S}(\hat{Q}_0) \geq \text{rank} \tilde{S}(Q) \quad \text{for all } Q \in S^{n \times n}.
\]
We now claim that for any \(X \in S^{n \times n} \),
\[
(3.6) \quad \tilde{S}(X) = \begin{bmatrix}
E & 0 \\
0 & 0
\end{bmatrix}, \quad \text{for some } E \in S^{\hat{k} \times \hat{k}}.
\]
Let \(Q \succeq 0 \) and \(F := \tilde{S}(Q) \). As \(F = [f_{ij}] \succeq 0 \), \(f_{ii} = 0 \) if and only if the \(i \)th column of \(F \) is zero. Suppose \(f_{ii} > 0 \) for some \(i > \hat{k} \). Then
\[
\text{rank} \tilde{S}(\hat{Q}_0 + Q) = \text{rank}(\tilde{S}(\hat{Q}_0) + \tilde{S}(Q)) \geq \hat{k} + 1 > \hat{k}.
\]
Thus, we have \(\text{rank} \tilde{S}(\hat{Q}_0 + Q) > \text{rank} \tilde{S}(\hat{Q}_0) \) which is a contradiction to (3.5). So, for any \(Q \succeq 0 \),
\[
\tilde{S}(Q) = \begin{bmatrix}
E' & 0 \\
0 & 0
\end{bmatrix}, \quad E' \in S^{\hat{k} \times \hat{k}}.
\]
Since for any \(X \in S^{n \times n} \), \(\tilde{S}(X) = \tilde{S}(X^+) - \tilde{S}(X^-) \), using the \(e \)-property of \(\tilde{S} \), we see that (3.6) holds.
Let \(X = \begin{bmatrix}
X_1 \\
X_2 \\
X_3
\end{bmatrix} \in S^{\hat{k} \times \hat{k}} \) be such that \(X(X - \tilde{S}(X)) \preceq 0 \). If
\[
\tilde{S}(X) = \begin{bmatrix}
F & 0 \\
0 & 0
\end{bmatrix}.
\]
Then from

\[(3.7) \begin{bmatrix} X_1 & X_2 \\ X_2^T & X_3 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_2^T & X_3 \end{bmatrix} - \begin{bmatrix} F & 0 \\ 0 & 0 \end{bmatrix} \preceq 0,\]

it follows that \(X_2^T X_2 + X_3^T \preceq 0\), and therefore, \(X_2\) and \(X_3\) are zero matrices. So, \(F = \tilde{S}_{\alpha\alpha}(X_1)\), where \(\alpha = \{1, \ldots, \hat{k}\}\). From (3.7) we now have

\[(3.8) X_1(X_1 - \tilde{S}_{\alpha\alpha}(X_1)) \preceq 0.\]

We next claim that \(\tilde{S}_{\alpha\alpha}\) has the property (c). Let \(X_0 \in \mathbb{S}^{\hat{k} \times \hat{k}}\) be positive semidefinite and

\[Y_0 = \tilde{S} \begin{bmatrix} X_0 & 0 \\ 0 & 0 \end{bmatrix}.\]

Since \(\tilde{S}\) has property (c), \(Y_0\) is a positive semidefinite matrix. Noticing that \(\tilde{S}_{\alpha\alpha}(X_0)\) is a leading principal submatrix of \(Y_0\), we conclude \(\tilde{S}_{\alpha\alpha}(X_0)\) is positive semidefinite. This proves our claim.

Now we assert that \(\tilde{S}_{\alpha\alpha}\) is nilpotent. Since \(\tilde{S}_{\alpha\alpha}\) has property (c), \(r := \rho(\tilde{S}_{\alpha\alpha})\) is an eigenvalue of \(\tilde{S}_{\alpha\alpha}\). Let \(X_0 \in \mathbb{S}^{\hat{k} \times \hat{k}}\) be a nonzero matrix in \(\mathbb{S}^{\hat{k} \times \hat{k}}\) such that

\[\tilde{S}_{\alpha\alpha}(X_0) = rX_0.\]

In view of (3.6) and the definition of \(\tilde{S}_{\alpha\alpha}\),

\[\tilde{S} \begin{bmatrix} X_0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} rX_0 & 0 \\ 0 & 0 \end{bmatrix}.\]

Hence, \(r\) is an eigenvalue of \(\tilde{S}\). Since \(\tilde{S}\) is nilpotent, \(r = 0\). Thus, \(\tilde{S}_{\alpha\alpha}\) is nilpotent.

By our induction assumption, \(I - \tilde{S}_{\alpha\alpha}\) must have \(P\)-property and hence from (3.8), \(X_1 = 0\); thus, \(X = 0\). This proves that \(I - \tilde{S}\) has the \(P\)-property. It is easy to see that \(I - S\) has the \(P\)-property if and only if \(I - \tilde{S}\) has the \(P\)-property. The proof is now complete.

Corollary 3.3. Let \(\{A_1, \ldots, A_\nu\}\) be a finite set of \(n \times n\) nilpotent matrices. Assume that \(A_i A_j = A_j A_i\) for all \(i\) and each \(A_i\) is nilpotent. Then the transformation \(X - \sum_{i=1}^\nu A_iX A_i^T\) has the \(P\)-property.

Proof. Let \(M_{A_i}(X) = A_iX A_i^T\). Then, using \(A_i A_j = A_j A_i\), we verify that \(M_{A_i} M_{A_j} = M_{A_j} M_{A_i}\). Now it is easy to see that \(\sum_{i=1}^\nu M_{A_i}\) is nilpotent, and hence, \(X - \sum_{i=1}^\nu A_iX A_i^T\) has the \(P\)-property. \(\square\)
3.2. Case 2. Now we shall show that if a matrix A is positive stable and $\rho(L_A^{-1}) < 1$, then $I - L_A^{-1}$ has the P-property. Note that by Lyapunov theorem (cf. Theorem 6 [3]), L_A^{-1} will have the property (c). Hence, $I - L_A^{-1}$ is a Stein-type transformation and satisfy all the items in Theorem 1.1. Before proving the main result, we will prove some intermediate lemmas.

Lemma 3.4. Let A be a positive stable matrix of order n and $\rho(L_A^{-1}) < 1$. Then

1. $\text{trace } A > \frac{n}{2}$.
2. If there exist a nonsingular X and $Y := X - L_A^{-1}(X)$ such that $XY = YX$ and $XY \preceq 0$, then X must be indefinite.

Proof. If λ is an eigenvalue of A, then it is straightforward to verify that $\lambda + \lambda^*$ is an eigenvalue of L_A. In other words, $2 \text{Re}(\lambda)$ is an eigenvalue of the linear transformation L_A. Our assumptions on A now imply that $0 < \frac{1}{2} \text{Re}(\lambda) < 1$, and hence, $\text{Re}(\lambda) > \frac{1}{2}$. As A is a real matrix, we now deduce that the sum of all the eigenvalues of A is greater than $\frac{n}{2}$. This proves 1.

Suppose $X \succeq 0$ is a nonsingular matrix such that $XY \preceq 0$. Because $XY = YX$, there exists an orthogonal matrix U such that $X = UD U^T$ and $Y = UE U^T$, where D and E are diagonal matrices and now $XY \preceq 0$ implies that

$$ (3.9) \quad DE \preceq 0. $$

The matrix D must be positive definite as X is a nonsingular positive semidefinite matrix and by (3.9), we conclude $E \preceq 0$; hence,

$$ Y \preceq 0. $$

This means that $X - L_A^{-1}(X) \preceq 0$. The matrix A is positive stable, and hence by Lyapunov theorem $I - L_A^{-1}$, is a Z-transformation. From the assumption $\rho(L_A^{-1}) < 1$, it follows from Item 2 of Theorem 1.1 that

$$ (I - L_A^{-1})(X) \preceq 0 \quad \implies \quad X \preceq 0. $$

Therefore, X cannot be positive semidefinite. This is a contradiction.

In a similar manner, it follows that X cannot be negative semidefinite. This proves 2. \[\Box \]

Lemma 3.5. If A is positive stable and $\rho(L_A^{-1}) < 1$, then

1. There does not exist a nonsingular matrix X commuting with $Y := X - L_A^{-1}(X)$, such that $XY \preceq 0$.

2. If X is either positive semidefinite or negative semidefinite and if $Y := X - L_A^{-1}(X)$ is such that $XY = YX$, then

$$XY \preceq 0 \Rightarrow X = 0.$$

Proof. Let X be a nonsingular matrix such that $XY = YX$ and $XY \preceq 0$, where $Y := X - L_A^{-1}(X)$. In view of previous lemma, X must be indefinite.

As $XY = YX$ and $XY \preceq 0$, there is an orthogonal matrix U such that

$$UXU^T = \begin{bmatrix} D & 0 \\ 0 & -E \end{bmatrix}, \quad UYU^T = \begin{bmatrix} -F & 0 \\ 0 & G \end{bmatrix},$$

where the matrices D and E are positive definite; F and G are positive semidefinite. Further D, E, F, and G are diagonal. Note that $X - Y = L_A^{-1}(X)$, and thus, $X = L_A(X - Y)$. We now have

$$UXU^T = UL_A(X-Y)U^T$$

$$= UL_A(U^T(U(X-Y)U^T)U)^T$$

$$= UL_A(U^T\begin{bmatrix} D + F & 0 \\ 0 & -E - G \end{bmatrix}U)U^T.$$

(3.10)

Let d_i, e_i, f_i and g_i be the diagonal entries of D, E, F and G, respectively. Assume that the order of D and F is ν. If $a_{11}, a_{22}, \ldots, a_{nn}$ are the diagonal entries of UAU^T, then we find from the above equations that

$$a_{kk} = \begin{cases} \frac{d_k}{2(d_k + f_k)} & \text{if } k = 1, \ldots, \nu \\ \frac{e_k}{2(e_k + g_k)} & \text{if } k = \nu + 1, \ldots, n. \end{cases}$$

Thus, $\text{trace } A = \text{trace } (UAU^T) \leq \frac{n}{2}$. This contradicts Lemma 3.4. Therefore item 1 is proved.

The proof of item 2 follows easily by replacing $E = 0$ in the above.

Theorem 3.6. Let A be an $n \times n$ positive stable matrix with real entries. If L_A is the corresponding Lyapunov transformation then the following are equivalent:

(i) $\rho(L_A^{-1}) < 1$.

(ii) $I - L_A^{-1}$ has the P-property.
Proof. Since $I - L_A^{-1}$ is a Stein-type-transformation, (ii) ⇒ (i) follows immediately from the fact that $\rho(L_A^{-1})$ is an eigenvalue of L_A^{-1}. We now prove (i) ⇒ (ii).

Let X be such that

$$X(X - L_A^{-1}(X)) \preceq 0.$$

Put $Y := X - L_A^{-1}(X)$. In view of Lemma 3.4 and Lemma 3.5, we see that X must be indefinite and X is singular. Since X and Y commute and $XY \preceq 0$, there is an orthogonal matrix U such that

$$UXU^T = \begin{bmatrix} D & 0 & 0 & 0 \\ 0 & -E & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad UYU^T = \begin{bmatrix} -F & 0 & 0 \\ 0 & G & 0 \\ 0 & 0 & L \end{bmatrix},$$

where the matrices D and E are positive definite; F and G are positive semidefinite. Further, D, E, F, G and L are diagonal. Assume that D and E are of order ν_1 and ν_2, respectively.

Now working similarly as in (3.10) of previous lemma, it is easy to show that

$$(3.11) \quad \begin{bmatrix} D & 0 & 0 & 0 \\ 0 & -E & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = L_{UAU^T} \begin{bmatrix} D + F & 0 & 0 \\ 0 & -E - G & 0 \\ 0 & 0 & -L \end{bmatrix}.$$

Put $\tilde{A} = UAU^T$. It is straightforward to verify that $\rho(L_{\tilde{A}}) = \rho(L_A)$. First we consider the case $L = 0$. We now define two diagonal matrices of order $\nu_1 + \nu_2$ viz.

$$\tilde{D} := \begin{bmatrix} D & 0 \\ 0 & -E \end{bmatrix}, \quad \tilde{E} := \begin{bmatrix} D + F & 0 \\ 0 & -E - G \end{bmatrix}.$$

It is easy to note that \tilde{D} and \tilde{E} are nonsingular.

Let $\tilde{A} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$, where A_1 is of order $\nu_1 + \nu_2$. Since $L = 0$, from (3.11), we have

$$\begin{bmatrix} \tilde{D} & 0 \\ 0 & 0 \end{bmatrix} = L_{\tilde{A}} \begin{bmatrix} \tilde{E} & 0 \\ 0 & 0 \end{bmatrix}.$$

From the above equation, we have

$$(3.12) \quad \begin{bmatrix} \tilde{D} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A_1 \tilde{E} + \tilde{E} A_1^T & \tilde{E} A_3^T \\ A_3 \tilde{E} & 0 \end{bmatrix};$$

hence, $A_3 \tilde{E} = 0$. The matrix \tilde{E} must be nonsingular and therefore $A_3 = 0$. Thus, every eigenvalue of A_1 must be an eigenvalue of A and so A_1 is positive stable. We
claim that $r := \rho(L^{-1}_{A_1}) < 1$. Since A_1 is positive stable, $L^{-1}_{A_1}$ will have the property (c) (by Lyapunov theorem) and so r is an eigenvalue of $L^{-1}_{A_1}$. Let V be such that $L^{-1}_{A_1}(V) = rV$. Let \tilde{V} be the $n \times n$ matrix defined by

$$
\tilde{V} = \begin{bmatrix} V & 0 \\ 0 & 0 \end{bmatrix}.
$$

It is easy to see that $L^{-1}_{A_1}(\tilde{V}) = r\tilde{V}$ and since $L^{-1}_{A_1}(V) = rV$, we deduce $r < 1$.

From (3.12), we have $\tilde{D} = A_1\tilde{E} + \tilde{E}A_1^T$, and thus, $L^{-1}_{A_1}(\tilde{D}) = \tilde{E}$. Now we have

$$
\begin{align*}
\tilde{D}(\tilde{D} - L^{-1}_{A_1}(\tilde{D})) &= \tilde{D}(\tilde{D} - \tilde{E}) \\
&= \begin{bmatrix} D & 0 \\ 0 & -E \end{bmatrix} \begin{bmatrix} -F & 0 \\ 0 & G \end{bmatrix} \\
&\leq 0.
\end{align*}
$$

Thus, \tilde{D} is a nonsingular matrix such that \tilde{D} and $\tilde{D} - L^{-1}_{A_1}(\tilde{D})$ commute and $\tilde{D}(\tilde{D} - L^{-1}_{A_1}(\tilde{D})) \preceq 0$. This contradicts the previous lemma.

We now consider the case where L is nonzero. First assume L is nonsingular. Since L is a diagonal matrix, the diagonal entries of L must be nonzero now. In this case using (3.11), we compute the diagonal entries α_{kk} of \tilde{A}:

$$
\alpha_{kk} = \begin{cases}
\frac{d_k}{2(d_k + f_k)} & \text{if } k = 1, \ldots, \nu_1 \\
\frac{e_k}{2(e_k + g_k)} & \text{if } k = \nu_1 + 1, \ldots, \nu_1 + \nu_2 \\
0 & \text{if } k > \nu_1 + \nu_2.
\end{cases}
$$

Now it is easy to see that $\text{trace}\tilde{A} \leq \frac{1}{2}(\nu_1 + \nu_2) < \frac{n}{2}$ which contradicts Lemma 3.4.

Finally, we consider the case L is singular but nonzero. In this case, we can write UXU^T and UYU^T as follows:

$$
UXU^T = \begin{bmatrix} D & 0 & 0 & 0 \\ 0 & -E & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad UYU^T = \begin{bmatrix} -F & 0 & 0 & 0 \\ 0 & G & 0 & 0 \\ 0 & 0 & L_1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
$$

where the matrix L_1 is nonsingular. Suppose the order of L_1 is ν_3. Let the matrix \tilde{A} be partitioned conformally (as above in UXU^T and UYU^T) into

$$
\tilde{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}.
$$
Following the same arguments as above, we see that A_{41}, A_{42}, and A_{43} are zero matrices. Further if \hat{A} is the $(\nu_1 + \nu_2 + \nu_3) \times (\nu_1 + \nu_2 + \nu_3)$ leading principal submatrix of A, then we see that

\[
\begin{bmatrix}
D & 0 & 0 \\
0 & -E & 0 \\
0 & 0 & 0
\end{bmatrix}
= L_{\hat{A}} \begin{bmatrix}
-F & 0 & 0 \\
0 & G & 0 \\
0 & 0 & L_1
\end{bmatrix},
\]

\hat{A} is positive stable and $\rho(L_{\hat{A}}^{-1}) < 1$. Invoking Lemma 3.4, we find that

\[
\text{trace } \hat{A} > \frac{1}{2}(\nu_1 + \nu_2 + \nu_3).
\]

However, calculating the trace of \hat{A} by finding the sum of all the diagonal entries of \hat{A} from (3.13), we see that

\[
\text{trace } \hat{A} \leq \frac{1}{2}(\nu_1 + \nu_2).
\]

This is a contradiction. The proof is now complete. \qed

REFERENCES

