A new eigenvalue bound for the Hadamard product of an M-matrix and an inverse M-matrix

Fubin Chen
Yaotang Li
liyaotang@ynu.edu.cn
Defeng Wang

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1521

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
A NEW EIGENVALUE BOUND FOR THE HADAMARD PRODUCT OF AN M-MATRIX AND AN INVERSE M-MATRIX\footnote{Received by the editors on November 20, 2011. Accepted for publication on March 24, 2012. Handling Editor: Roger A. Horn.}

FUBIN CHEN1, YAOTANG LI†, AND DEFENG WANG§

Abstract. If A and B are $n \times n$ nonsingular M-matrices, a new lower bound for the minimum eigenvalue $\tau(A \circ B^{-1})$ for the Hadamard product of A and B^{-1} is derived. This bound improves the result of \cite{Huang}.\footnote{Department of Architecture and Engineering, Oxbridge College, Kunming University of Science and Technology, Kunming, Yunnan, 650106, P.R. China (chenfubinyn@163.com). Supported by Scientific Research Fund of Yunnan Provincial Education Department (No. 2010Y073) and Scientific Research Fund of Oxbridge College (No. JQ10003).}

Key words. M-matrix, Hadamard product, Spectral radius, Lower bound.

AMS subject classifications. 15A06, 15A15, 15A48.

1. Introduction. For a positive integer n, N denotes the set \{1, 2, \ldots, n\}. The set of all $n \times n$ complex matrices is denoted by $\mathbb{C}^{n \times n}$ and $\mathbb{R}^{n \times n}$ denotes the set of all $n \times n$ real matrices.

Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ and $B = (b_{ij}) \in \mathbb{R}^{n \times n}$. We write $A \geq B$ ($> B$) if $a_{ij} \geq b_{ij}$ ($> b_{ij}$) for all $i, j \in \{1, 2, \ldots, n\}$. If 0 is the null matrix and $A \geq 0$ (> 0), we say that A is a nonnegative (positive) matrix. The spectral radius of A is denoted by $\rho(A)$. If A is a nonnegative matrix, the Perron-Frobenius theorem guarantees that $\rho(A)$ is an eigenvalue of A.

We let Z_n denote the class of all $n \times n$ real matrices all of whose off-diagonal entries are nonpositive. An $n \times n$ matrix A is called an M-matrix if there exists an $n \times n$ nonnegative matrix B and a nonnegative real number λ such that $A = \lambda I - B$ and $\lambda \geq \rho(B)$, I is the identity matrix; if $\lambda > \rho(B)$, we call A a nonsingular M-matrix; if $\lambda = \rho(B)$, we call A a singular M-matrix. Denote by M_n the set of nonsingular M-matrices.

\cite{Huang}. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 428:1551–1559, 2008.\footnote{School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, 650091, P.R. China (liyaotang@ynu.edu.cn). Supported by National Natural Science Foundations of China (No. 10961027, No. 71161020) and IRTSTYN, and the Natural Science Foundation of Yunnan Province (No. 2009CD011).}

\cite{Huang}. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 428:1551–1559, 2008.\footnote{Department of Forest Product Industry, Yunnan Forestry Technological College, Kunming, Yunnan, 650224, P.R. China (wangdefengyn@126.com).}
Let $A \in \mathbb{Z}_n$ and let $\tau(A) = \min\{\Re(\lambda) : \lambda \in \sigma(A)\}$. Basic for our purpose are the following simple facts (see Problems 16, 19 and 28 in Section 2.5 of [4]):

1. $\tau(A) \in \sigma(A)$; $\tau(A)$ is called the minimum eigenvalue of A.

2. If $A, B \in M_n$, and $A \geq B$, then $\tau(A) \geq \tau(B)$.

3. If $A \in M_n$, then $\rho(A^{-1})$ is the Perron eigenvalue of the nonnegative matrix A^{-1}, and $\tau(A) = \frac{1}{\rho(A^{-1})}$ is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M-matrix. It is known that there exist positive vectors u and v such that $Au = \tau(A)u$ and $v^T A = \tau(A)v^T$, u and v being called right and left Perron eigenvectors of A, respectively.

For two real matrices $A = (a_{ij})$ and $B = (b_{ij})$ of the same size, the Hadamard product of A and B is $A \circ B = (a_{ij}b_{ij})$. If A and B are two nonsingular M-matrices, then it is proved in [2] that $A \circ B^{-1}$ is a nonsingular M-matrix.

If $A = (a_{ij})$ is a nonsingular M-matrix, we write $N = D - A$, where $D = \text{diag}(a_{ii})$. Note that $a_{ii} > 0$ for all i if $A \in M_n$. Thus, we define $J_A = D^{-1}N$; J_A is nonnegative.

Let $A, B \in M_n$ and $B^{-1} = (\beta_{ij})$, in [4, Theorem 5.7.31] the following classical result is given:

$$\tau(A \circ B^{-1}) \geq \tau(A) \min_{1 \leq i \leq n} \beta_{ii}.$$

Recently, Huang [5, Theorem 9] improved this result and gave a new lower bound for $\tau(A \circ B^{-1})$, that is

$$\tau(A \circ B^{-1}) \geq \frac{1 - \rho(J_A)\rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} \frac{a_{ii}}{b_{ii}}.$$

In this paper, for two nonsingular M-matrices A and B, we give a new lower bound for $\tau(A \circ B^{-1})$; some examples are given to illustrate our result.

2. Some lemmas and the main result. In order to prove our result, we first give some lemmas.

Lemma 2.1. [4, Lemma 5.1.2] Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that $D \in \mathbb{C}^{n \times n}$ and $E \in \mathbb{C}^{n \times n}$ are diagonal matrices, then

$$D(A \circ B)E = (DAE) \circ (DBE) = (AE) \circ (DB) = A \circ (DBE).$$
Lemma 2.2. [5, Lemma 8] Let $B = (b_{ij}) \in M_n$ be irreducible, and let $y = (y_i)$ be a positive vector such that $J_B y = \rho(J_B) y$. Then for $B^{-1} = (\beta_{ij})$, we have
\[
|\beta_{ji}| \leq \rho(J_B) \frac{y_j}{y_i}, \quad i \neq j,
\]
and
\[
\beta_{ii} \geq \frac{1}{b_{ii}(1 + \rho^2(J_B))}.
\]

Lemma 2.3. [3, Theorem 6.4.7] Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$. Then all the eigenvalues of A lie in the region:
\[
\bigcup_{i,j=1 \atop i \neq j}^n \left\{ z \in \mathbb{C} : |z - a_{ii}| |z - a_{jj}| \leq \sum_{k \neq i} |a_{ki}| \sum_{k \neq j} |a_{kj}| \right\}.
\]

By the definition of J_A, we have
\[
\rho(J_A^T) = \rho(D^{-1} N^T) = \rho(N D^{-1}) = \rho(D^{-1} (ND^{-1}) D) = \rho(D^{-1} N) = \rho(J_A).
\]

Theorem 2.4. Let $A = (a_{ij}), B \in \mathbb{R}^{n \times n}$ be two nonsingular M-matrices and let $B^{-1} = (\beta_{ij})$. Then
\[
\tau(A \circ B^{-1}) \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left(a_{ii} \beta_{ii} - a_{jj} \beta_{jj} \right)^2 \right. \\
\left. + 4 a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right\}^{\frac{1}{2}}.
\]

Proof. It is evident that (2.1) is an equality for $n = 1$.

We next assume that $n \geq 2$.

If $A \circ B^{-1}$ is irreducible, then A and B are irreducible. Then J_A and J_B are also irreducible and nonnegative, so there exists a positive vector $u = (u_i)$ such that $J_A^T u = \rho(J_A^T) u$. Note that $\rho(J_A^T) = \rho(J_A)$, so we have
\[
\sum_{j \neq i} \frac{|a_{ji}| u_j}{u_i} = a_{ii} \rho(J_A).
\]
Let \(\hat{A} = (\hat{a}_{ij}) = \hat{U}A\hat{U}^{-1} \) and \(\hat{B}^{-1} = (\hat{b}_{ij}) = \hat{V}B^{-1}\hat{V}^{-1} \) in which \(\hat{U} \) and \(\hat{V} \) are the nonsingular diagonal matrices \(\hat{U} = \text{diag}(u_1, u_2, \ldots, u_n) \) and \(\hat{V} = \text{diag}\left(\frac{1}{v_1}, \frac{1}{v_2}, \ldots, \frac{1}{v_n}\right) \). Then, we have

\[
\hat{A} = (\hat{a}_{ij}) = \hat{U}A\hat{U}^{-1}
\]

\[
= \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
 \frac{1}{u_1} & 1 & \cdots & 0 \\
 1 & \frac{1}{u_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \frac{1}{u_n}
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_n
\end{bmatrix}
\]

and

\[
\hat{B}^{-1} = (\hat{b}_{ij}) = \hat{V}B^{-1}\hat{V}^{-1}
\]

\[
= \begin{bmatrix}
 \frac{1}{v_1} & 1 & \cdots & 0 \\
 1 & \frac{1}{v_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \frac{1}{v_n}
\end{bmatrix}
\begin{bmatrix}
 \beta_{11} & \beta_{12} & \cdots & \beta_{1n} \\
 \beta_{21} & \beta_{22} & \cdots & \beta_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \beta_{n1} & \beta_{n2} & \cdots & \beta_{nn}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n
\end{bmatrix}
\]

Also let \(W = \hat{V}\hat{U} \). Then, \(W \) is nonsingular. From Lemma 2.1, we have

\[
(VU)(A \circ B^{-1})(VU)^{-1} = VU(A \circ B^{-1})U^{-1}V^{-1} = (UAU^{-1}) \circ (VB^{-1}V^{-1}) = \hat{A} \circ \hat{B}^{-1}.
\]

Thus, we have \(\tau(A \circ B^{-1}) = \tau(\hat{A} \circ \hat{B}^{-1}) \) and

\[
\hat{A} \circ \hat{B}^{-1} = (c_{ij}) = \begin{bmatrix}
 a_{11}\beta_{11} & a_{12}\beta_{12} & \cdots & a_{1n}\beta_{1n} \\
 a_{21}\beta_{21} & a_{22}\beta_{22} & \cdots & a_{2n}\beta_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1}\beta_{n1} & a_{n2}\beta_{n2} & \cdots & a_{nn}\beta_{nn}
\end{bmatrix}.
\]
We next consider the minimum eigenvalue of $\hat{A} \circ \hat{B}^{-1}$. Let $\tau(\hat{A} \circ \hat{B}^{-1}) = \lambda$, so that $0 < \lambda < a_{ii} \beta_{ii}, \forall i \in N$. Thus, by Lemma 2.3, there is a pair (i, j) of positive integers with $i \neq j$ such that

$$|\lambda - a_{ii}\beta_{ii}| |\lambda - a_{jj}\beta_{jj}| \leq \sum_{k \neq i} |c_{ki}| \sum_{k \neq j} |c_{kj}|.$$

Observe that

$$\sum_{k \neq i} |c_{ki}| \sum_{k \neq j} |c_{kj}| = \left(\sum_{k \neq i} \left|\frac{a_{ki} \beta_{ik} u_{ik} v_{ik}}{u_{ik} v_{ik}}\right|\right) \left(\sum_{k \neq j} \left|\frac{a_{kj} \beta_{jk} u_{jk} v_{jk}}{u_{jk} v_{jk}}\right|\right) \leq \left(\sum_{k \neq i} \left|\frac{a_{ki} u_{ik}}{u_{ik}}\right| \rho(J_B) \beta_{ii}\right) \left(\sum_{k \neq j} \left|\frac{a_{kj} u_{jk}}{u_{jk}}\right| \rho(J_B) \beta_{jj}\right) = a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B).$$

Thus, we have

$$|\lambda - a_{ii} \beta_{ii}| |\lambda - a_{jj} \beta_{jj}| \leq a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B).$$

Then, we have

$$\lambda \geq \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4 a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}.$$

That is,

$$\tau(A \circ B^{-1}) \geq \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4 a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\} \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4 a_{ii} a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}. $$

Now, assume that $A \circ B^{-1}$ is reducible. It is known that a matrix in Z_n is a nonsingular M-matrix if and only if all its leading principal minors are positive (see condition (E17) of Theorem 6.2.3 of [1]). If we denote by $D = (d_{ij})$ the $n \times n$ permutation matrix with $d_{11} = d_{23} = \cdots = d_{n-1,n} = d_{n1} = 1$, then both $A - tD$ and $B - tD$ are irreducible nonsingular M-matrices for any chosen positive real number t, sufficiently small such that all the leading principal minors of both $A - tD$ and $B - tD$ are positive. Now we substitute $A - tD$ and $B - tD$ for A and B, respectively in the previous case, and then letting $t \to 0$, the result follows by continuity. \blacksquare
Theorem 2.5. Let $A = (a_{ij}), B \in \mathbb{R}^{n \times n}$ be two nonsingular M-matrices and let $B^{-1} = (\beta_{ij})$. Then

$$
\min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}
\geq \frac{1 - \rho(J_A) \rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} \frac{a_{ii}}{b_{ii}}.
$$

Proof. Without loss of generality, for $i \neq j$, assume that

$$a_{ii} \beta_{ii} - a_{ii} \beta_{ii} \rho(J_A) \rho(J_B) \leq a_{jj} \beta_{jj} - a_{jj} \beta_{jj} \rho(J_A) \rho(J_B).$$

Thus, (2.2) is equivalent to

$$a_{jj} \beta_{jj} \rho(J_A) \rho(J_B) \leq a_{ii} \beta_{ii} \rho(J_A) \rho(J_B) + a_{jj} \beta_{jj} - a_{ii} \beta_{ii}$$

From (2.1) and (2.3), we have

$$\frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}$$

$$\geq \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}$$

$$= \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}$$

$$= \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{jj} \beta_{jj} - a_{ii} \beta_{ii} + 2a_{ii} \beta_{ii} \rho(J_A) \rho(J_B))^2 \right]^{\frac{1}{2}} \right\}$$

$$= \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{jj} \beta_{jj} - a_{ii} \beta_{ii} + 2a_{ii} \beta_{ii} \rho(J_A) \rho(J_B))^2 \right]^{\frac{1}{2}} \right\}$$

$$= a_{ii} \beta_{ii} - a_{jj} \beta_{jj} \rho(J_A) \rho(J_B)$$

$$\geq \frac{1 - \rho(J_A) \rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} \frac{a_{ii}}{b_{ii}}$$

Thus, we have

$$\tau(A \circ B^{-1}) \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\}$$

$$\geq \frac{1 - \rho(J_A) \rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} \frac{a_{ii}}{b_{ii}}. \quad \Box$$
Remark 2.6. Theorem 2.5 shows that the result of Theorem 2.4 is better than the result of Theorem 9 in [5].

3. Examples.

Example 3.1. Let
\[
A = \begin{bmatrix}
1 & -0.5 & 0 & 0 \\
-0.5 & 1 & -0.5 & 0 \\
0 & -0.5 & 1 & -0.5 \\
0 & 0 & -0.5 & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
4 & -1 & -1 & -1 \\
-2 & 5 & -1 & -1 \\
0 & -2 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{bmatrix}.
\]

Then
\[
A \circ B^{-1} = \begin{bmatrix}
0.4 & -0.1 & 0 & 0 \\
-0.1167 & 0.3667 & -0.1 & 0 \\
0 & -0.1167 & 0.4 & -0.1 \\
0 & 0 & -0.1 & 0.4
\end{bmatrix}.
\]

By calculating with Matlab 7.0, we have \(\rho(J_A) = 0.809, \rho(J_B) = 0.7652\), and \(\tau(A \circ B^{-1}) = 0.2148\). By Theorem 9 in [5], we have
\[
\tau(A \circ B^{-1}) \geq \frac{1 - \rho(J_A)\rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} \frac{a_{ii}}{b_{ii}} = 0.048.
\]

By our Theorem 2.4, we have
\[
\tau(A \circ B^{-1}) \geq \min_{i \neq j} \frac{1}{2} \left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A) \rho^2(J_B) \right]^{\frac{1}{2}} \right\} = 0.1524.
\]
which approaches the real value 0.2148. This numerical example shows that the result in Theorem 2.4 is better than that in Theorem 9 in [5] in some cases.

Example 3.2. Let
\[
A = \begin{bmatrix}
2 & -2 \\
-1 & 2
\end{bmatrix}, \quad B = \begin{bmatrix}
2 & -0.5 \\
-0.5 & 1
\end{bmatrix}.
\]

Then
\[
A \circ B^{-1} = \begin{bmatrix}
1.7142 & -0.5714 \\
-0.2857 & 2.2858
\end{bmatrix}.
\]
By calculating with Matlab 7.0, we have $\rho(J_A) = 0.7071$, $\rho(J_B) = 0.3536$, and $\tau(A \circ B^{-1}) = 1.0144$. By Theorem 9 in [5], we have

$$\tau(A \circ B^{-1}) \geq \frac{1 - \rho(J_A)\rho(J_B)}{1 + \rho^2(J_B)} \min_{1 \leq i \leq n} a_{ii} = 0.6666.$$

By our Theorem 2.4, we have

$$\tau(A \circ B^{-1}) \geq \min_{i \neq j} \frac{1}{2}\left\{ a_{ii} \beta_{ii} + a_{jj} \beta_{jj} - \left[(a_{ii} \beta_{ii} - a_{jj} \beta_{jj})^2 + 4a_{ii}a_{jj} \beta_{ii} \beta_{jj} \rho^2(J_A)\rho^2(J_B) \right]^{\frac{1}{2}} \right\} = 1.0144.$$

It is a surprise to see that our bound is the minimum eigenvalue of $A \circ B^{-1}$. This numerical example shows that the bound of Theorem 2.4 is sharp.

REFERENCES