2012

Singular points of the ternary polynomials associated with 4-by-4 matrices

Mao-ting Chien
mtmtchien@scu.edu.tw

Hiroshi Nakazato

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1554

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
SINGULAR POINTS OF THE TERNARY POLYNOMIALS ASSOCIATED WITH 4-BY-4 MATRICES

MAO-TING CHIEN† AND HIROSHI NAKAZATO‡

Abstract. Let T be an $n \times n$ matrix. The numerical range of T is defined as the set
\[W(T) = \{ \xi^* T \xi : \xi \in \mathbb{C}^n, \|\xi\|^2 = 1 \}. \]
A homogeneous ternary polynomial associated with T is defined as
\[F(t, x, y) = \det(tI_n + x(T + T^*)/2 + y(T - T^*)/(2i)). \]
The numerical range $W(T)$ is the convex hull of the real affine part of the dual curve of $F(t, x, y) = 0$.
We classify the numerical ranges of 4×4 matrices according to the singular points of the curve $F(t, x, y) = 0$.

Key words. Numerical range, Homogeneous ternary polynomial, Singular point.

AMS subject classifications. 15A60, 14H45.

1. Introduction. The numerical range $W(T)$ of an $n \times n$ complex matrix T was introduced by Toeplitz and defined as the set
\[W(T) = \{ \xi^* T \xi : \xi \in \mathbb{C}^n, \|\xi\|^2 = 1 \}. \]
Kippenhahn [11] (see also [20] for an English translation) characterized this range from a viewpoint of the algebraic curve of the homogeneous ternary polynomial associated with T:
\[F(t, x, y) = \det(tI_n + x(T + T^*)/2 + y(T - T^*)/(2i)). \]
Let Γ_F be the algebraic curve of $F(t, x, y)$, i.e.,
\[\Gamma_F = \{ [(t, x, y)] \in \mathbb{C}P^2 : F(t, x, y) = 0 \}, \]
where $[(t, x, y)]$ is the equivalence class containing $(t, x, y) \in \mathbb{C}^3 - (0, 0, 0)$ under the relation $(t_1, x_1, y_1) \sim (t_2, x_2, y_2)$ if $(t_2, x_2, y_2) = k(t_1, x_1, y_1)$ for some nonzero complex number k. The dual curve Γ_F^\wedge of Γ_F is defined by
\[\Gamma_F^\wedge = \{ [(T, X, Y)] \in \mathbb{C}P^2 : T t + X x + Y y = 0 \text{ is a tangent line of } \Gamma_F \}. \]
Kippenhahn [11] showed that $W(T)$ is the convex hull of Γ_F in the real affine plane. The real affine part of Γ_F is called the boundary generating curve of $W(A)$. There have been a number of papers on the boundary generating curves of the numerical range; for example, see [2, 3, 6, 10].

A complete classification of the range $W(T)$ of 3×3 matrices via the factorability of the homogeneous ternary polynomial $F(t, x, y)$ is given in [11] (see also [10]). It shows that the shapes of $W(T)$ fall into four categories, namely,

(i) a (possibly degenerate) triangle, if $F(t, x, y)$ factors into three real linear factors;
(ii) a convex hull of a non-degenerate elliptical disc and a point which is possibly contained in the elliptical disc, if $F(t, x, y)$ factors into a real linear factor and an irreducible quadratic factor;
(iii) a smooth boundary curve with a flat portion, if $F(t, x, y)$ is irreducible and the curve Γ_F has a real node;
(iv) an ovular, if $F(t, x, y)$ is irreducible and the curve Γ_F has no singular point.

Examples of matrices for each category are also given there.

In this paper, we classify the numerical range of 4×4 matrices along Kippenhahn’s direction by examining the singular points of the homogeneous ternary polynomial curve $F(t, x, y) = 0$. We focus mainly on the case when $F(t, x, y)$ is irreducible.

2. Singular points. We outline briefly the classification of singular points of an algebraic curve. For references on the classification, see, for instance, [15] or [18].

Let $G(t, x, y)$ be a complex ternary form of degree n. A point $(t_0, x_0, y_0) \neq (0, 0, 0)$ of Γ_G is called a singular point if

$$\frac{\partial}{\partial t} G(t_0, x_0, y_0) = \frac{\partial}{\partial x} G(t_0, x_0, y_0) = \frac{\partial}{\partial y} G(t_0, x_0, y_0) = 0.$$

If $G(t, x, y)$ is multiplicity free in the polynomial ring $\mathbb{C}[t, x, y]$ (it happens when $G(t, x, y)$ is irreducible), then the number of singular points of $\Gamma_G \subset \mathbb{C}P^2$ is finite. Suppose that $(1, x_0, y_0)$ is a singular point of Γ_G. We consider the Taylor expansion of $G(1, x, y)$ around $(1, x_0, y_0)$:

$$G(1, x_0 + X, y_0 + Y) = \prod_{j=1}^{m} (a_j X + b_j Y) + \sum_{i+j \geq m+1} c_{i,j} X^i Y^j,$$

where $(a_j, b_j) \neq (0, 0)$, $j = 1, 2, \ldots, m$, are pairs of complex numbers. The number $m \geq 2$ is called the multiplicity of the singular point $(1, x_0, y_0)$. The following three frames are used to provide local expression of the curve $G(1, x, y) = 0$ near the point (x_0, y_0). The finest frame is the ring $\mathbb{C}[X]^*$ of fractional formal power series of $X = x - x_0$ of non-negative order. Let

$$G(1, x_0, y) = c_0(y - y_0)^k (y - y_1)^{\ell_1} \cdots (y - y_p)^{\ell_p}$$
for some $k \geq m$, $c_0 \neq 0$, where y_1, \ldots, y_p are roots of the equations of $G(1, x_0, y) = 0$ other than y_0. Then there are unique k solutions $y = y_j(x)$ of $G(1, x, y) = 0$ satisfying $y(x_0) = y_0$ expressed in fractional power series

$$y_j(X) = y_0 + a_jX^{m_1/n_1} + b_jX^{m_2/n_2} + \cdots,$$

where $m_1/n_1 < m_2/n_1 < \cdots$ are positive rational numbers [18, Chapter IV]. If we use fractional power series, we can express the curve $G(1, x, y) = 0$ near (x_0, y_0) as the union of k parametrized curves. If we assume sufficient small modulus of X, the above series are convergent. The coarse frame is the polynomial ring $\mathbb{C}[x, y]$ itself. If $G(1, x, y)$ is irreducible in this ring, we can do nothing with this frame. The intermediate frame is the ring $\mathbb{C}[[X, Y]]$ of formal power series in $X = x - x_0$ and $Y = y - y_0$. By the analyticity of the function $G(1, x, y)$ near (x_0, y_0), we can replace this ring by a slightly more restrictive one, that is, the ring $A(V)$ of analytic functions in a neighborhood V of (x_0, y_0) in \mathbb{C}^2. We assume that V does not contain singular points of the curve $G(1, x, y) = 0$ other than (x_0, y_0). Consider its irreducible decomposition

$$G(1, x, y) = g_0(x, y)g_1(x, y)g_2(x, y)\cdots g_s(x, y)$$

in $A(V)$, where $g_0(x_0, y_0) \neq 0$ and $g_j(x_0, y_0) = 0$ for $j = 1, 2, \ldots, s$. Each curve $g_j(x, y) = 0$ ($j = 1, 2, \ldots, s$) is called an irreducible analytic branch of Γ_G around $(1, x_0, y_0)$. The number s for the singular point is an important invariant of the singular point. To recognize the difference of decompositions in $\mathbb{C}[X]^*$ and in $\mathbb{C}[[X, Y]]$, we provide a simple example. Let $G(t, x, y) = ty^2 - x^3$. Then the point $(t, x, y) = (1, 0, 0)$ is a singular point of multiplicity 2. In the ring $\mathbb{C}[[x, y]]$, the analytic function $y^2 - x^3$ is irreducible. However, the curve $y^2 - x^3 = 0$ is decomposed as the union of the curves $y = x^{2/3}, y = (-1 \pm i\sqrt{3})/2x^{2/3}$.

Now we classify singular points of Γ_G, we consider two functions

$$g(X, Y) = G(1, x_0 + X, y_0 + Y), \quad g_Y(X, Y) = G_Y(1, x_0 + X, y_0 + Y).$$

The Taylor series of these functions define an ideal (g, g_Y) of the ring $\mathbb{C}[[X, Y]]$ of formal power series in X, Y. The dimension of the quotient ring $\mathbb{C}[[X, Y]]/(g, g_Y)$ is finite, and is called the local intersection number of Γ_G, Γ_{G_*} at P. We define

$$\delta(P) = \frac{1}{2}\left(\dim\mathbb{C}[[X, Y]]/(g, g_Y) - m + s\right).$$

This number is always a non-negative integer (cf. [9, 19]). Then genus of Γ_G is given by

$$g(\Gamma_G) = (1/2)(n - 1)(n - 2) - \sum_{j=1}^{k} \delta(P_j),$$
where \(P_1, \ldots, P_k \) are singular points of \(\Gamma_G \). The dual curve of a plane algebraic curve \(\Gamma_G \) has the same genus as the original curve. Table 1 displays some types of singular points (cf. [9, p. 37]).

Table 2.1

Classification of singular points.

<table>
<thead>
<tr>
<th>Types of singular points</th>
<th>multiplicity (m)</th>
<th>number (s)</th>
<th>(\delta(P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_2)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(O'_2)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(O''_2)</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(C_2)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(C'_2)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(C''_2)</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(O_3)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(C_3)</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(CO)</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

A node in the wide sense is a singular point \((x_0, y_0)\) of the curve \(\Gamma_G \) for which every irreducible analytic branch around \((x_0, y_0)\) is expressed as

\[
x_j(u) = x_0 + b_j u + \sum_{k=2}^{\infty} c_k^{[j]} u^k,
\]

\[
y_j(u) = y_0 - a_j u + \sum_{k=2}^{\infty} d_k^{[j]} u^k
\]

for some \((a_j, b_j) \neq (0, 0)\) (\(j = 1, 2, \ldots, m \)). Such irreducible analytic branch is called linear. The singular points \(O_2, O'_2, O''_2, O_3 \) belongs to this type. If the coefficients satisfy \(a_i b_j \neq a_j b_i \) for \(1 \leq i < j \leq m \), then the node \((1, x_0, y_0)\) is called an ordinary singular point. A singular point \((1, x_0, y_0)\) of \(\Gamma_G \) of multiplicity \(m \) is an ordinary \(m \)-ple point \(O_m \) if and only if the coefficients \(a_j, b_j \) in (2.1) satisfy \(a_j b_k - b_j a_k \neq 0 \) for \(1 \leq j < k \leq m \). An irreducible analytic branch other than linear type is called a cusp. The singular points \(C_2, C'_2, C''_2, C_3 \) belongs to this class. A tacnode cusp \(CO \) composed of a linear-type irreducible analytic branch and a cusp \(C_2 \). Since we frequently deal with singular points of multiplicity 2, we pay special attention to this type of singular points. We assume that \((1, x_0, y_0)\) is a singular point of one of the type \(C_2, C'_2, C''_2 \) or \(O'_2, O''_2 \). By changing coordinates, we may assume that the Taylor expansion of \(G(1, x, y) \) around \((1, x_0, y_0)\) satisfies

\[
G(1, x_0, y_0) = a (y - y_0)^2 + \sum_{i+j \geq 3} c_{i,j} (x-x_0)^i (y-y_0)^j,
\]

where \(a \neq 0 \). Under this assumption, if \((1, x_0, y_0)\) is of type \(C_2, C'_2 \) or \(C''_2 \), then the
irreducible analytic branch \(g_1(x, y) = 0 \) around the singular point is expressed as

\[
x = x_0 + u^\ell \\
y = y_0 + a_k e^{2\pi ij k/\ell} u^k + a_{k+1} e^{2\pi ij (k+1)/\ell} u^{k+1} + \ldots
\]

for some integers \(2 \leq \ell < k \) and \(j = 0, 1, 2, \ldots, \ell - 1 \), and \(a_k \neq 0 \). For the tacnode cusp \(CO \), one irreducible analytic branch is expressed in this form. If \((1, x_0, y_0)\) is a singular point of type \(O'_2 \) or \(O''_2 \), then the local expression of \(\Gamma_G \) in a neighborhood of \((1, x_0, y_0)\) is given by two irreducible analytic branches expressed as

\[
y_1 = y_0 + \alpha_2 x^2 + \alpha_3 x^3 + \ldots \\
y_2 = y_0 + \beta_2 x^2 + \beta_3 x^3 + \ldots.
\]

The node is \(O'_2 \) if \(\alpha_2 \neq \beta_2 \), and the node is \(O''_2 \) if \(\alpha_2 = \beta_2, \alpha_3 \neq \beta_3 \).

A real homogeneous polynomial \(p(x) = p(x_1, x_2, \ldots, x_m) \) of degree \(n \) is hyperbolic with respect to a vector \(e = (e_1, e_2, \ldots, e_m) \) if \(p(e) \neq 0 \) and, for all vectors \(w \in \mathbb{R}^m \), the univariate polynomial \(t \mapsto p(w - te) \) has all real roots (cf. [1]). The following theorem is mentioned in [11, 20] (in the dual form) without a rigorous proof. We give a proof here relying on an affirmative solution to Lax conjecture [8, 12].

Theorem 2.1. Let \(G(t, x, y) \) be a real homogeneous ternary polynomial of degree \(m > 2 \). If \(G(t, x, y) \) is hyperbolic with respect to \((1, 0, 0)\) then \(\Gamma_G \) has no real cusps.

Proof. Suppose \(G(t, x, y) \) of degree \(m \) is hyperbolic with respect to \((1, 0, 0)\) with \(G(1, 0, 0) = 1 \). By Theorem 8 in [12], there exists a pair of \(m \times m \) real symmetric matrices \(S_1, S_2 \) satisfying

\[
G(t, x, y) = \det(t I_m + x S_1 + y S_2).
\]

Then, by Rellich’s result [16] on the perturbation of Hermitian matrices, there exist real-valued analytic functions \(\lambda_1(\theta), \lambda_2(\theta), \ldots, \lambda_n(\theta) \) on the real line with period \(2\pi \) such that

\[
G(t, -\cos \theta, -\sin \theta) = (t - \lambda_1(\theta))(t - \lambda_2(\theta)) \cdots (t - \lambda_n(\theta)).
\]

Hence, every real singular point \((t, x, y)\) is expressed as \((t_0, \cos \theta_0, \sin \theta_0)\) for some real numbers \(t_0, \theta_0 \). By using a rotation of coordinates, we may assume that \(\theta_0 = 0 \). A local expression of \(G(t, x, y) = 0 \) near the point \((t_0, 1, 0)\) is given by

\[
(t, y) = (\lambda_j(\theta) \sec \theta, \tan \theta)
\]

for indices \(j \) satisfying \(\lambda_j(0) = t_0 \). Thus, the singular point is a node in the wide sense.

Remark 2.2. We notice that \(G(t, x, y) \) has real coefficients. If \(\Gamma_G \) has an imaginary singular point, then its conjugate is also a singular point of the same type.
3. Classification. Let $G(t,x,y)$ be an irreducible quartic ternary form. The complex projective curve Γ_G is classified into 21 types according to the number of its singular points and their forms (cf. [15, 17]). Each type usually contains infinitely many projectively inequivalent quartic curves. The following list of 21 types contains the type names, and forms of singular points:

[i] type I_a: a ramphoid cusp C''_2.
[ii] type I_b: a simple cusp C_3 of order 3.
[iv] type $II 1/2a$: a cusp C_2 and a double cusp C'_2.
v] type III_a: a double cusp C'_2 and a node O_2.
[vi] type III_b: a cusp C_2 and a tacnode O'_2.
vii] type III_d: three cusps C_2, C_2, C_2.
[viii] type III_f: a cusp C_2 and two nodes O_2, O_2.
[x] type III_k: a cusp C_2 and a node O_2.
[xi] type III_m: a cusp C_2.
xii] type $II 1/2a$: an ordinary triple point O_3.
xiii] type III_a: a node O_2 and a tacnode O'_2.
xiv] type III_c: two cusps C_2, C_2 and a node O_2.
xv] type III_g: three nodes O_2, O_2, O_2.
xvi] type II_a: an osnode O''_2.
xviii] type III_j: two nodes O_2, O_2.
xix] type III_l: two cusps C_2, C_2.
[x] type III_n: a node O_2.
xxi] type III_o: no singular points.

Let T be a 4×4 matrix. The boundary generating curve of $W(T)$ can be classified by the factorability of the homogeneous ternary polynomial $F(t,x,y)$ associated with T. We obtain the following result.

Theorem 3.1. The boundary generating curve of the numerical range of a 4×4 matrix falls into one of the following cases:

Case 1. The vertices of a (possibly degenerate) quadrilateral.

Case 2. A non-degenerate ellipse and two points, one or two of these points may be contained in the elliptical disc.

Case 3. Two non-degenerate ellipses, these ellipses may take arbitrary relative position.

Case 4. The dual curve of an irreducible cubic curve and a point which may be contained in the convex hull of the dual curve.

Case 5. The dual of an irreducible quartic curve.
Case 4 of Theorem essentially reduces to the boundary generating curve of an irreducible cubic curve which is analyzed in [11] for 3×3 matrices. The following result classifies the boundary generating curve of Case 5 for an irreducible quartic homogeneous ternary polynomial.

Theorem 3.2. Let T be a 4×4 matrix. If the associated homogeneous ternary polynomial $F(t, x, y)$ is irreducible then Γ_F is one of the types [xii], [xiii], ..., [xxi]. Conversely, for each type of [xii], [xiii], ..., [xxi], there exists a 4×4 matrix so that its associated curve Γ_F is of the type required.

Proof. Let T be a 4×4 matrix, and $F(t, x, y)$ be its associated homogeneous ternary polynomial. It is obvious that $F(t, x, y)$ is hyperbolic with respect to $(1,0,0)$ and $F(1,0,0) = 1$. Then, by Theorem 3, Γ_F has no real cusp. Since F has real coefficients, if Γ_F has an imaginary singular point, then its conjugate is also a singular point of the same type. Hence, Γ_F falls into one of the types [xii], [xiii], ..., [xxi]. For the converse part, for each type of [xii], [xiii], ..., [xxi], we give a 4×4 matrix whose associated curve Γ_F is of the type required in Section 4.

4. Examples. We provide 10 examples of matrices to complete the proof of Theorem 3.2. There are two images in each example. The first one is the curve Γ_F associated with the matrix T, and the second one is its dual curve Γ_F^\wedge which is the boundary generating curve of $W(T)$. Example 4.5 in this section fulfills the missing link in [13]. This example disproves the conjecture for the non-existence of type [xvi] mentioned in [13]. The types [xii], [xiii], ..., [xxi] are classified into 4 families via the genus g of Γ_F. The genus g is 0 for [xii], [xiii],[xiv],[xv], [xvi]. The genus g is 1 for [xvii],[xviii],[xix], the genus g is 2 for [xx], and the genus g is 3 for [xxi].

Example 4.1. [xii] type II 1/2a:

Let T be a nilpotent 4×4 matrix given by

$$T = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}.$$

The form $F(t, x, y)$ is computed that

$$16F(t, x, y) = 16t^4 - 24t^2x^2 - 24t^2y^2 + 16tx^3 + 16txy^2 - 3x^4 - 2x^2y^2 + y^4.$$
Example 4.2. \textbf{[xiii] type III}_c:

Let T be a 4×4 real matrix given by

$$T = \begin{pmatrix}
1 & 0 & b & 0 \\
0 & 1 & 0 & c \\
-b & 0 & -1 & 2 \\
0 & -c & -2 & -1
\end{pmatrix},$$

where $b = \sqrt{3 + 2\sqrt{2}}$, $c = \sqrt{3 - 2\sqrt{2}}$. Then

$$F(t, x, y) = t^4 - 2t^2x^2 - 10t^2y^2 - 8txy^2 + x^4 + 2x^2y^2 + y^4.$$

The curve Γ_F has an ordinary double point O_2 at $(t, x, y) = (1, 1, 0)$ and a tacnode O'_2 at $(t, x, y) = (1, -1, 0)$. The order of the dual curve of Γ_F is 6. The curves Γ_F and its dual curve Γ^*_F are shown in Figure 3 and Figure 4, respectively.
Example 4.3. [xiv] Type III_e:

Let T be a 4×4 real matrix given by
\[
T = \begin{pmatrix}
-187 & 55\sqrt{3} & 44\sqrt{3} & 0 \\
-55\sqrt{3} & -187 & 22\sqrt{3} & 330 \\
-44\sqrt{3} & -22\sqrt{3} & 11 & 0 \\
0 & -330 & 0 & 363
\end{pmatrix}.
\]

Then the form $F(t, x, y)$ associated with T is given by
\[
F(t, x, y) = t^4 - 100914t^2x^2 - 125235t^2y^2 + 11585024tx^3 + 14494590txy^2 + 139631217x^4 + 680586885x^2y^2 + 632491200y^4.
\]

The curve Γ_F has a node O_2 at $(t, x, y) = (1, 1/187, 0)$ and two imaginary cusps C_2, C_2 at $(t, x, y) = (1, 1/37, 10i/407)$ and $(t, x, y) = (1, 1/37, -10i/407)$. The order of the dual curve of Γ_F is 4. The dual curve of Γ_F is projectively equivalent to Γ_F. The curve Γ_F is known as a limaçon of Pascal (cf. [15]). The real affine part of Γ_F and its dual curve are displayed in Figure 5 and Figure 6, respectively.

![Figure 5. Γ_F of Example 4.3](image)

![Figure 6. Dual curve of Figure 5.](image)

Example 4.4. [xv] Type III_g:

Let T be a 4×4 real matrix given by
\[
T = \begin{pmatrix}
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 3 \\
5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Then we have
\[
16F(t, x, y) = 16t^4 - 264t^2(x^2 + y^2) + 320tx^3 - 960txy^2 + 225(x^2 + y^2)^2.
\]

The curve Γ_F can be parametrized as
\[
x = -\frac{10}{9}(\cos(2s) + \frac{4}{5}\cos s), \quad y = \frac{10}{9}(\sin(2s) - \frac{4}{5}\sin s).
\]
This is a special roulette curve treated in [5]. The curve Γ_F has three nodes O_1, O_2, O_3 at $(t, x, y) = (1, 2/5, 0), (t, x, y) = (1, -1/5, \sqrt{3}/5), (t, x, y) = (1, -1/5, -\sqrt{3}/5)$. The order of the dual curve of Γ_F is 6. The images of the real affine part of Γ_F is produced in Figure 7, and its dual curve in Figure 8.

Example 4.5. [xvi] type IIa:

Let T be a 4×4 real matrix given by

$$
T = \begin{pmatrix}
-1 & 0 & 0 & 2/\sqrt{7} \\
0 & -1 & 2/\sqrt{5} & 0 \\
0 & -2/\sqrt{5} & 3/5 & 2/\sqrt{35} \\
-2/\sqrt{7} & 0 & -2/\sqrt{35} & 1/7
\end{pmatrix}.
$$

Then the form $F(t, x, y)$ associated with T is given by

$$
35F(t, x, y) = 35t^4 - 44t^3x - 14t^2x^2 - 52t^2y^2 + 20tx^3 + 40txy^2 + 3x^4 + 12x^2y^2 + 16y^4.
$$

The curve Γ_F has an osnode O'_2 at $(t, x, y) = (1, 1, 0)$. The order of the dual curve of Γ_F is 6. The real affine part of Γ_F is shown in Figure 9, and the real affine part of the dual curve of Γ_F is displayed in Figure 10. The form $F(t, x, y)$ can also be obtained by a deformation of a ternary quartic form $G(x, y, z)$ provided in [17]:

$$
G(x, y, z) = x^2z^2 - 2xyz^2 + y^4 + y^2z^2 - z^4.
$$

The curve Γ_G has an osnode at $(x, y, z) = (1, 0, 0)$. The matrix T is constructed from the ternary form $F(t, x, y)$ by solving some algebraic equations.

Example 4.6. [xvii] type IIIi:

Let T be a 4×4 real matrix given by

$$
T = \begin{pmatrix}
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 1 \\
-1 & -1 & 0 & 1 \\
0 & -1 & -1 & 2
\end{pmatrix}.
$$
Ternary Polynomials Associated With 4-by-4 Matrices

Then

\[F(t, x, y) = t^4 - 3t^2x^2 - 4t^2y^2 + 2tx^3 + txy^2 + 3x^2y^2 + y^4. \]

The curve \(\Gamma_F \) has a tacnode \(O_2' \) at \((t, x, y) = (1, 1, 0)\). The order of the dual curve of \(\Gamma_F \) is 8. The images \(\Gamma_F \) and its dual curve \(\Gamma_F^\wedge \) are displayed in Figure 11 and Figure 12, respectively.

Example 4.7. [xviii] **type III**$_j$:

Let \(T \) be a 4 \times 4 real matrix given by

\[
T = \begin{pmatrix}
0 & 2e/(1 - e^2) & 0 & 2/(1 - e^2) \\
0 & 0 & 2/(1 - e^2) & 0 \\
0 & 0 & 0 & 2e/(1 - e^2) \\
0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

where \(e \) is an arbitrary constant satisfying \(0 < e < 1 \). Then the form \(F(t, x, y) \) associated with \(T \) is given by

\[
F(t, x, y) = t^4 - \frac{2(1 + e^2)}{(1 - e^2)^2} (t^2 x^2 + t^2 y^2) + \frac{1}{(1 - e^2)^2} x^4 + \frac{2(1 + e^4)}{(1 - e^2)^4} x^2 y^2 + \frac{(1 + e^2)^2}{(1 - e^2)^4} y^4.
\]
The curve Γ_F has two nodes O_2, O_2 at $(t, x, y) = (1, 0, (1 - \epsilon^2)/\sqrt{1 + \epsilon^2})$, $(t, x, y) = (1, 0, -(1 - \epsilon^2)/\sqrt{1 + \epsilon^2})$. The real affine curve

$$\{(x, y) \in \mathbb{R}^2 : F(1, x, y) = 0\}$$

is symmetric with respect to the y-axis and this curve consists of two analytic branches. The right branch is expressed as

$$x = \cos \theta + \epsilon \sqrt{1 - \epsilon^2 \sin^2 \theta},$$

$$y = (1 - \epsilon^2) \sin \theta,$$

$0 \leq \theta \leq 2\pi$. This curve has a historical background, it was treated by Fladt in [7] as one of Kepler's models of planetary orbits. We provide the image of the real affine part of Γ_F for $\epsilon = 1/5$ in Figure 13, and its dual curve in Figure 14.

Figure 13. Γ_F of Example 4.7

Figure 14. Dual curve of Figure 13.

Example 4.8. [xix] **type IIIe**:

Let T be a 4×4 real matrix given by

$$T = \begin{pmatrix} 2 & a(k) & 0 & 0 \\ -a(k) & 2(3 - k)/(3 + 3k) & 0 & b(k) \\ 0 & 0 & -2 & c(k) \\ 0 & -b(k) & -c(k) & 2(1 - 3k)/(3 + 3k) \end{pmatrix},$$

where $0 < k < 1$, and entries $a(k), b(k), c(k)$ are given by

$$a(k) = \frac{4k\sqrt{3 + k}}{\sqrt{3\sqrt{1 + 5k + 7k^2 + 3k^3}}},$$

$$b(k) = \frac{16\sqrt{k}}{3\sqrt{3 + 10k + 3k^2}},$$

$$c(k) = \frac{4\sqrt{1 + 5k + 7k^2 + 3k^3}}{\sqrt{3(1 + k)^2\sqrt{3 + k}}}.$$
We compute that the associated form \(F(t, x, y) \) which is given by

\[
9(1 + k)^4 F(t, x, y) = 9(1 + k)^4 t^4 + 24(1 - k)(k + 1)^3 t^3 x
- 8(k + 1)^2(3k^2 + 14k + 3)t^2 x^2 - 16(k + 1)^2(k^2 + 8k + 1)t^2 y^2
- 64(1 - k^2)(k^2 + 4k + 1)txy - 16(k + 1)^2(3 - k)(1 - 3k)x^4
- 64(k + 1)^2(k^2 - 4k + 1)x^2 y^2 + 256k^2 y^4
\]

(cf. [11]). The associated curve \(\Gamma_F \) has two imaginary cusps \(C_2, C_2 \) at

\[
(t, x, y) = (1, -\frac{1 + k}{2(1 - k)}, i\frac{1 + k}{2(1 - k)}), \quad (t, x, y) = (1, -\frac{1 + k}{2(1 - k)}, -i\frac{1 + k}{2(1 - k)}).
\]

The images of the real affine part of \(\Gamma_F \) for \(k = 2/3 \) is shown in Figure 15, and its real affine part of dual curve \(\Gamma_F^\perp \) in Figure 16.

Example 4.9. [[xx] type III\(_n\) :]

Let \(T \) be a 4 \(\times \) 4 tridiagonal matrix given by

\[
T = \begin{pmatrix}
-1 & 1 & 0 & 0 \\
-1 & -1 & 2 & 0 \\
0 & -2 & 2 & 1 \\
0 & 0 & -1 & 3
\end{pmatrix}.
\]

Then

\[
F(t, x, y) = t^4 + 3t^3 x - 3t^2 x^2 - 6t^2 y^2 - 7tx^3 - 11txy^2 + 6x^4 + 5x^2 y^2 + y^4.
\]

The curve \(\Gamma_F \) has a node \(O_2 \) at \((t, x, y) = (1, 1, 0) \). The order of the dual curve of \(\Gamma_F \) is 10. The real affine parts of \(\Gamma_F \) and \(\Gamma_F^\perp \) are displayed in Figure 17 and Figure 18, respectively.
Example 4.10. \([xxi]\) type \(\text{III}_o\):

Let \(T\) be a \(4 \times 4\) upper triangular matrix given by

\[
T = \begin{pmatrix}
\frac{4}{5} & \frac{12}{25} & -\frac{36}{125} & -\frac{81}{625} \\
0 & \frac{3}{5} & \frac{16}{25} & \frac{36}{125} \\
0 & 0 & -\frac{3}{5} & \frac{12}{25} \\
0 & 0 & 0 & -\frac{4}{5}
\end{pmatrix}.
\]

Then

\[
5^8 \times 2^2 F(t, x, y) = 1562500t^4 - 1973861t^2 x^2 - 411361t^2 y^2 + 485809x^4 \\
+ 130993x^2 y^2 + 5184 y^4.
\]

The matrix \(T\) is a typical example of matrices treated in [4]. The boundary generating curve of \(W(T)\) for this matrix satisfies a Poncelet property with the unit circle (see [4, 15, 19] for Poncelet property). The curve \(\Gamma_F\) has no singular points. The order of the dual curve of \(\Gamma_F\) is 12. The real affine parts of \(\Gamma_F\) and \(\Gamma_F^\vee\) are displayed in Figure 19 and Figure 20, respectively.
Acknowledgments. The authors are grateful to anonymous referees for many valuable suggestions and comments on an earlier version of the paper. The first author is partially supported by Taiwan National Science Council under NSC 99-2115-M-031-004-MY2, and the second author is supported in part by Japan Society for Promotion of Science, KAKENHI 23540180.

REFERENCES