2014

Change of the *-congruence canonical form of 2-by-2 matrices under perturbations

Vyacheslav Futorny
Lena Klimenko
Vladimir Sergeichuk
sergeich@imath.kiev.ua

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1608

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
CHANGE OF THE *CONGRUENCE CANONICAL FORM OF 2-BY-2 MATRICES UNDER PERTURBATIONS

VYACHESLAV FUTORNY†, LENA KLIMENKO‡, AND VLADIMIR V. SERGEICHUK§

Abstract. It is constructed the Hasse diagram for the closure ordering on the sets of *congruence classes of 2×2 matrices. In other words, it is constructed the directed graph whose vertices are 2×2 canonical complex matrices for *congruence and there is a directed path from A to B if and only if A can be transformed by an arbitrarily small perturbation to a matrix that is *congruent to B.

Key words. Closure graph, *Congruence canonical form, Perturbations.

AMS subject classifications. 15A21, 15A63, 47A07.

1. Introduction. We study how arbitrarily small perturbations of a 2×2 complex matrix can change its *canonical form for *congruence (matrices A and B are *congruent if $S^*AS = B$ for a nonsingular S). We construct the closure graph G_2, which is defined for any natural n as follows.

Definition 1.1. The closure graph G_n for *congruence classes of $n \times n$ complex matrices is the directed graph, in which each vertex v represents in a one-to-one manner a *congruence class C_v of $n \times n$ matrices, and there is a directed path from a vertex v to a vertex w if and only if one (and hence each) matrix from C_v can be transformed to a matrix form C_w by an arbitrarily small perturbation.

The graph G_n is the Hasse diagram of the *congruence classes of $n \times n$ matrices with the following partial order: $a \succeq b$ means that a is contained in the closure of b. Thus, the graph G_n shows how the *congruence classes relate to each other in the affine space of $n \times n$ matrices.

Since each $n \times n$ matrix is uniquely represented in the form $P + iQ$ in which P and Q are Hermitian matrices, G_n is also the closure graph for *congruence classes.

†Department of Mathematics, University of São Paulo, Brazil (futorny@ime.usp.br). Supported by the CNPq (grant 301320/2013-6) and FAPESP (grant 2010/50347-9).
‡National Technical University of Ukraine “Kyiv Polytechnic Institute”, Prospect Peremogy 37, Kiev, Ukraine (e.n.klimenko@gmail.com).
§Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine (sergeich@imath.kiev.ua). This work was done during the visit of V.V. Sergeichuk to the University of São Paulo supported by FAPESP grant 2012/18139-2.

Received by the editors on September 13, 2013. Accepted for publication on February 15, 2014.
Handling Editor: Roger A. Horn.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 27, pp. 146-154, February 2014
http://math.technion.ac.il/iic/ela
of Hermitian matrix pencils $P + \lambda Q$.

Note that the closure graph G_2 for *congruence, which we construct in Theorem 2.2, is more complicated than the closure graphs for congruence classes of 2-by-2 and 3-by-3 matrices, which were constructed by the authors in [4], since an arrow between *congruence classes in G_2 may depend on the parameters of their matrices.

Unlike perturbations of matrices under congruence and *congruence, perturbations of matrices under similarity and of matrix pencils have been much studied. For a given matrix A, den Boer and Thijssse [3] and, independently, Markus and Parilis [17] described the set of all Jordan canonical matrices such that for each J from this set there exists a matrix that is arbitrarily close to A and is similar to J. Their description was extended to Kronecker’s canonical forms of pencils by Pokrzywa [18]. Edelman, Elmroth, and Kågström [7] developed a comprehensive theory of closure relations for similarity classes of matrices, for equivalence classes of matrix pencils, and for their bundles. The software StratiGraph [8] constructs their closure graphs. The closure graph for 2×3 matrix pencils was constructed and studied by Elmroth and Kågström [9].

The term “*congruence orbit” is often used instead of “*congruence class” (see De Terán and Dopico [2]). The problem that we consider can be called “the stratification of orbits of matrices under *congruence” by analogy with the stratification of orbits of matrices under similarity and of matrix pencils [7, 8, 15]. An informal introduction to perturbations of matrices determined up to similarity, congruence, or *congruence is given by Klimenko and Sergeichuk [16].

All matrices that we consider are complex matrices.

2. The closure graph for *congruence classes of 2-by-2 matrices. Define the n-by-n matrices:

$$J_n(\lambda) := \begin{bmatrix} \lambda & 1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \lambda \end{bmatrix}, \quad \Delta_n := \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}.$$

We use the following canonical form for *congruence.

Proposition 2.1 ([10, Theorem 4.5.21]). *Each square complex matrix is *congruent to a direct sum, uniquely determined up to permutation of summands, of matrices of the form*

$$
\begin{pmatrix}
0 & I_m \\
J_m(\lambda) & 0 \\
\end{pmatrix}
\quad (0 \neq \lambda \in \mathbb{C}, \ |\lambda| < 1), \quad \mu \Delta_n \quad (\mu \in \mathbb{C}, \ |\mu| = 1), \quad J_k(0).
$$
This canonical form obtained in [11] was based on [21, Theorem 3] and was generalized to other fields in [14]. A direct proof that this form is canonical is given in [12, 13].

The vertices of G_n can be identified with the $n \times n$ canonical matrices for *congruence since each *congruence class contains exactly one canonical matrix.

For each $A \in \mathbb{C}^{n \times n}$ and a small matrix $X \in \mathbb{C}^{n \times n}$,

$$(I + X)^*A(I + X) = A + X^*A + AX + \underbrace{X^*AX}_{\text{very small}}$$

and so the *congruence class of A in a small neighborhood of A can be obtained by a very small deformation of the real affine matrix space $\{A + X^*A + AX | X \in \mathbb{C}^{n \times n}\}$. (By the local Lipschitz property [20], if A and B are close to each other and $B = S^*AS$ with a nonsingular S, then S can be taken near I_n.) The real vector space

$$T(A) := \{X^*A + AX | X \in \mathbb{C}^{n \times n}\}$$

is the tangent space to the *congruence class of A at the point A. The numbers

$$(2.2) \quad \dim \mathbb{R} T(A), \quad \text{codim} \mathbb{R} T(A) := 2n^2 - \dim \mathbb{R} T(A)$$

are called the dimension and, respectively, codimension over \mathbb{R} of the *congruence class of A.

The following theorem proved in Section 3 is the main result of the paper.

Theorem 2.2. The closure graph for *congruence classes of 2×2 matrices is

$$(2.3)$$

$$\begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ \sigma & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & \tau \\ \tau & \tau^2 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ \tau \end{bmatrix}, \quad \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}, \quad \begin{bmatrix} \lambda & 0 \\ 0 & -\lambda \end{bmatrix}, \quad \begin{bmatrix} \lambda \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Change of the *Congruence Canonical Form of 2-by-2 Matrices Under Perturbations

in which \(\lambda, \mu, \nu, \sigma, \tau \in \mathbb{C}, \mathbb{R}_+ \) denotes the set of nonnegative real numbers, and \(\text{Im}(c) \) denotes the imaginary part of \(c \in \mathbb{C} \). Each *congruence class is given by its canonical matrix, which is a direct sum of blocks of the form (2.1). The graph is infinite: Each vertex except for \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \) represents an infinite set of vertices indexed by the parameters of the corresponding canonical matrix. The *congruence classes of canonical matrices that are located at the same horizontal level in (2.3) have the same dimension over \(\mathbb{R} \), which is indicated to the right.

The arrow \(\begin{bmatrix} \lambda & 0 \\ 0 & \nu \end{bmatrix} \to \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \) exists if and only if \(\lambda = \mu a + \nu b \) for some nonnegative \(a, b \in \mathbb{R} \). The arrow \(\begin{bmatrix} \lambda & 0 \\ 0 & \nu \end{bmatrix} \to \begin{bmatrix} 0 & \tau \\ \tau & \tau \end{bmatrix} \) exists if and only if the imaginary part of \(\lambda \tau \) is nonnegative. The arrow \(\begin{bmatrix} \lambda & 0 \\ 0 & \nu \end{bmatrix} \to \begin{bmatrix} \lambda & 0 \\ 0 & -\nu \end{bmatrix} \) exists if and only if \(\tau = ±\lambda \). The arrows \(\begin{bmatrix} \lambda & 0 \\ 0 & \nu \end{bmatrix} \to \begin{bmatrix} \lambda & 0 \\ 0 & \pm \lambda \end{bmatrix} \) exist if and only if the value of \(\lambda \) is the same in both matrices. The other arrows exist for all values of parameters of their matrices.

Remark 2.3. Let \(M \) be a 2 \(\times \) 2 canonical matrix for *congruence.

- Let \(N \) be another 2 \(\times \) 2 canonical matrix for *congruence. Each neighborhood of \(M \) contains a matrix whose *congruence canonical form is \(N \) if and only if there is a directed path from \(M \) to \(N \) in (2.3) (if \(M = N \), then there is the “lazy” path of length 0 from \(M \) to \(N \)).

- The closure of the *congruence class of \(M \) is equal to the union of the *congruence classes of all canonical matrices \(N \) such that there is a directed path from \(N \) to \(M \) (if \(M = N \) then the “lazy” path exists).

Remark 2.4. It is not surprising that \(\text{diag}(\lambda, ±\lambda) \) and \(\text{diag}(\mu, \nu) \) \((|\lambda| = |\mu| = |\nu| = 1 \text{ and } \mu ≠ ±\nu) \) have different behavior under perturbation: many properties of a nonsingular matrix \(A \) with respect to *congruence are determined by its *cosquare \((A^*)^{-1}A \) (see [13, 14, 19]), the *cosquare of \(\text{diag}(\lambda, ±\lambda) \) has a multiple eigenvalue, and the *cosquare of \(\text{diag}(\mu, \nu) \) has two distinct eigenvalues.

3. Proof of Theorem 2.2

The following lemma is a weak form of [6, Example 2.1] (which is a special case of [6, Theorem 2.2] about \(n \times n \) matrices).

Lemma 3.1. Let \(A \) be any 2 \(\times \) 2 matrix. Then all matrices \(A + X \) that are sufficiently close to \(A \) can be simultaneously reduced by some transformation

\[
S(X)^*(A + X)S(X),
\]

\(S(X) \) is nonsingular and continuous on a neighborhood of zero,
to one of the following forms:

\[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} \oplus \begin{bmatrix}
* & * \\
* & *
\end{bmatrix}, \quad
\begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix} + \begin{bmatrix}
\varepsilon & 0 \\
0 & \delta
\end{bmatrix} (|\lambda| = 1), \quad
\begin{bmatrix}
\lambda & 0 \\
0 & \mu
\end{bmatrix} + \begin{bmatrix}
\varepsilon & 0 \\
0 & \delta
\end{bmatrix} (\lambda \pm \mu), \quad
\begin{bmatrix}
0 & 1 \\
\lambda & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
* & *
\end{bmatrix} (|\lambda| < 1), \quad
\begin{bmatrix}
0 & \lambda \\
\lambda & 0
\end{bmatrix} + \begin{bmatrix}
* & 0 \\
0 & *
\end{bmatrix} (|\lambda| = 1).
\]

Each of these matrices has the form $A_{\text{can}} + D$, in which A_{can} is a direct sum of blocks of the form (2.1), the *'s in D are complex numbers, all $\varepsilon, \delta, \delta_\mu$ are either real numbers if $\lambda, \mu \in \mathbb{R}$ or pure imaginary numbers if $\lambda, \mu \in \mathbb{C}$. (Clearly, D tends to zero as X tends to zero.) For each $A_{\text{can}} + D$, twice the number of its stars plus the number of its entries of the form $\varepsilon, \delta, \delta_\mu$ is equal to the codimension over \mathbb{R} (defined in (2.2)) of the *congruence class of A_{can}.

Note that the codimensions of congruence and *congruence classes were calculated in [1] [5] and [2] [6], respectively.

By [22] Part III, Theorem 1.7, the boundary of each *congruence class is a union of *congruence classes of strictly lower dimension, which ensures the following lemma.

Lemma 3.2. If $M \to N$ is an arrow in the closure graph G_2, then the *congruence class C_M of M is contained in the closure of the *congruence class C_N of N, and so the dimension of C_M is lower than the dimension of C_N.

For each vertex M in G_2, the dimension d_M over \mathbb{R} of the *congruence class of M is indicated in (2.6). It was calculated as follows: By [22], $d_M = 8 - c_M$ in which c_M is the codimension of the *congruence class of M; c_M was taken from Lemma 3.1.

The proof of Theorem 2.2 is divided into two steps.

Step 1: Let us prove that each arrow in (2.3) is correct. To make sure that an arrow $M \to N$ is correct, we need to prove that the canonical matrix M can be transformed by an arbitrarily small perturbation to a matrix whose *congruence canonical form is N. Consider each of the arrows of (2.3).

- The arrows $\begin{bmatrix}
0 & 0 \\
0 & \nu
\end{bmatrix} \to \begin{bmatrix}
0 & 0 \\
0 & \nu
\end{bmatrix}$, $\begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix} \to \begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix}$, and $\begin{bmatrix}
0 & \tau \\
0 & 0
\end{bmatrix} \to \begin{bmatrix}
\tau & 0 \\
0 & \tau
\end{bmatrix}$ are correct.

Let $A := \begin{bmatrix}
\lambda & 0 \\
0 & \nu
\end{bmatrix}$, or $\begin{bmatrix}
\lambda & 0 \\
0 & \nu
\end{bmatrix}$. Then A is *congruent to εA, in which ε is any positive real number, and each neighborhood of $\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$ contains εA with a sufficiently small ε.

- The arrow $\begin{bmatrix}
0 & 0 \\
0 & \nu
\end{bmatrix} \to \begin{bmatrix}
0 & 0 \\
\mu & 0
\end{bmatrix}$ (with given $\lambda, \mu, \nu \in \mathbb{C}$ such that $|\lambda| = |\mu| = |\nu| = 1$)
exists if and only if \(\lambda \in \mu \mathbb{R}_+ + \nu \mathbb{R}_+ = \{\mu a + \nu b | a, b \in \mathbb{R}, a \geq 0, b \geq 0\} \) (in particular, [\(\begin{smallmatrix} \lambda & 0 \\ 0 & 0 \end{smallmatrix} \) \(\rightarrow \) [\(\begin{smallmatrix} \sigma & 0 \\ 0 & 0 \end{smallmatrix} \)] and [\(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \) \(\rightarrow \) [\(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \)] exist).

The arrow [\(\begin{smallmatrix} \lambda & 0 \\ 0 & 0 \end{smallmatrix} \) \(\rightarrow \) [\(\begin{smallmatrix} \nu & 0 \\ 0 & 0 \end{smallmatrix} \)] exists if and only if there exists an arbitrarily small perturbation

\[
\begin{bmatrix}
\lambda & 0 \\
0 & 0 \\
\end{bmatrix} + E =
\begin{bmatrix}
\lambda + \varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{22}
\end{bmatrix}
\]

of

\[
\begin{bmatrix}
\lambda & 0 \\
0 & 0 \\
\end{bmatrix},
\]

i.e.,

\[
\bar{x}x + \bar{z}z = \lambda + \varepsilon_{11} \quad \bar{y}y + \bar{t}t = \varepsilon_{12}
\]

For fixed \(\lambda, \mu, \nu \) and an arbitrarily small \(\varepsilon_{11} \), the first equation with unknowns \(x \) and \(z \) has a solution only if \(\lambda \in \mu \mathbb{R}_+ + \nu \mathbb{R}_+ \).

Conversely, let \(\lambda \in \mu \mathbb{R}_+ + \nu \mathbb{R}_+ \). Take \(\varepsilon_{11} = 0 \) and chose \(x \) and \(z \) for which the first equality in (3.2) holds. Then take arbitrarily small \(y, t \) for which \(S \) is nonsingular and get arbitrarily small \(\varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22} \) for which the other equalities in (3.2) hold.

- **The arrow** [\(\begin{smallmatrix} \lambda & 0 \\ 0 & 0 \end{smallmatrix} \) \(\rightarrow \) [\(\begin{smallmatrix} \omega & 1 \\ 0 & 0 \end{smallmatrix} \)] \((|\lambda| = 1, |\sigma| < 1) \) **exists** for all \(\lambda \) and \(\sigma \).

The arrow [\(\begin{smallmatrix} \lambda & 0 \\ 0 & 0 \end{smallmatrix} \) \(\rightarrow \) [\(\begin{smallmatrix} \omega & 0 \\ 0 & 0 \end{smallmatrix} \)] exists if and only if there exists an arbitrarily small perturbation (3.1) that is *congruent* to [\(\begin{smallmatrix} \omega & 0 \\ 0 & 0 \end{smallmatrix} \)]. This means that there exists a nonsingular \(S = [\begin{smallmatrix} x & y \\ z & t \end{smallmatrix}] \) such that

\[
\begin{bmatrix}
x & y \\
z & t
\end{bmatrix}
\begin{bmatrix}
\omega & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x & y \\
z & t
\end{bmatrix}
= \begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix}
+ E,
\]

i.e.,

\[
\bar{x}x + \bar{z}z = \lambda + \varepsilon_{11} \quad \bar{y}y + \bar{t}t = \varepsilon_{12}
\]

Suppose that \(\bar{x}x = u + iv, \sigma = \alpha + \beta i \), and \(\lambda + \varepsilon_{11} = a + bi \), in which \(u, v, \alpha, \beta, a, b \in \mathbb{R} \). Then the first equation in (3.3) takes the form

\[
(a + \beta i)(u + vi) = a + bi,
\]

which gives the system

\[
\begin{align*}
(1 + \alpha)u - \beta v &= a \\
\beta u + (\alpha - 1)v &= b
\end{align*}
\]
with respect to the unknowns u and v. Its determinant $\alpha^2 + \beta^2 - 1$ is nonzero since $|\sigma| < 1$. Therefore, the first equation in (3.3) holds for some x and z. Taking arbitrarily small y, t for which S is nonsingular, we get arbitrarily small $\varepsilon, \varepsilon_1, \varepsilon_2, \varepsilon_2$ for which the other equalities in (3.3) hold.

- The arrow $\left[\begin{array}{c} \lambda \\ 0 \\ \lambda \end{array} \right] \rightarrow \left[\begin{array}{c} \varphi \\ \tau \end{array} \right]$ (|\lambda| = |\tau| = 1) exists if and only if $\text{Im}(\lambda \varphi) \geq 0$.

Consider the first equation in (3.4). Since $\bar{\varphi}(\lambda + \varepsilon_1) \neq 0$, $z \neq 0$ too. Thus,

$$\text{Im}(\bar{\varphi}(\lambda + \varepsilon_1)) = \text{Im}(\bar{\varphi}(\lambda + \varepsilon_1)) = \bar{\varphi} > 0$$

and so $\text{Im}(\bar{\varphi}(\lambda)) \geq 0$.

Conversely, if $\text{Im}(\bar{\varphi}(\lambda)) \geq 0$, then we put $\varepsilon_1 = 0$ and take x, z such that the first equation in (3.4) holds. Taking arbitrarily small y, t for which S is nonsingular, we get arbitrarily small $\varepsilon_1, \varepsilon_2, \varepsilon_2$ for which the other equalities in (3.3) hold.

- The arrow $\left[\begin{array}{c} \lambda \\ 0 \\ \lambda \end{array} \right] \rightarrow \left[\begin{array}{c} \varphi \\ \tau \end{array} \right]$ (|\lambda| = |\tau| = 1) exists if and only if $\lambda = \pm \tau$.

The arrow $\left[\begin{array}{c} \lambda \\ 0 \\ \lambda \end{array} \right] \rightarrow \left[\begin{array}{c} \varphi \\ \tau \end{array} \right]$ (|\lambda| = |\tau| = 1) exists if and only if there exists an arbitrarily small perturbation $[\delta] + E$ of $[\delta]$, such that $S^* \tau = \left[\begin{array}{c} \lambda \\ 0 \\ \lambda \end{array} \right] + E$.

Equating the determinants of both sides, we find that $-\tau^2 \det(S^* S)$ is arbitrarily close to $-\lambda^2$. Since

$$\det(S^* S) = \det(S) \det(S)$$

is a real positive number, $|\tau^2| \det(S^* S)$ is arbitrarily close to $|\lambda^2|$. Since $|\lambda| = |\tau| = 1$, $\det(S^* S)$ is arbitrarily close to 1. Hence, $-\tau^2 = -\lambda^2$, and so $\lambda = \pm \tau$.

\[\text{Im}(\bar{\varphi}(\lambda + \varepsilon_1)) = \text{Im}(\bar{\varphi}(\lambda + \varepsilon_1)) = \bar{\varphi} > 0\]
Conversely, let $\lambda = \pm \tau$. Since
\[
\begin{bmatrix}
1 & 1 \\
1/2 & -1/2
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
1 & 1/2 \\
1 & -1/2
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix} =
\begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix},
\]
$[\lambda 0 1 0]$ is *congruent to $\pm [0 1 1]$. Its arbitrarily small perturbation $\pm [\lambda 0 1 0] \ (\varepsilon \in \mathbb{R}, \varepsilon > 0)$ is *congruent to $\pm [0 1 1]$ via $\text{diag}(\sqrt{\varepsilon}, 1/\sqrt{\varepsilon})$. Therefore, $[\lambda 0 1 0] \rightarrow [\lambda 0 1 1]$, and so $[\lambda 0 1 0] \rightarrow [0 1 1]$.

Step 2: Let us prove that we have not missed arrows in (2.3). We write $M \rightarrow N$ if the closure graph G_2 does not have the arrow $M \rightarrow N$; i.e., if each matrix obtained from M by an arbitrarily small perturbation is not *congruent to N. Lemma 3.2 ensures that we need to prove only the absence of the arrows
\[
\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
\mu & 0 \\
0 & \nu
\end{bmatrix}, \quad
\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & \tau \\
0 & \tau
\end{bmatrix},
\]

- $\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
\mu & 0 \\
0 & \nu
\end{bmatrix}$ and $\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}$, $(|\lambda| = |\mu| = |\nu| = 1, \mu \neq \pm \nu, |\sigma| < 1)$.

Suppose that there is an arbitrarily small perturbation $A := \begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} + E$ of $\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix}$ that is *congruent to $B := [0 0]$ or $C := [0 1 0]$. Then $A^*A := (A^{-1})^*A$ is similar to B^*B or C^*C, which is impossible since the eigenvalues of A^*A are arbitrarily close to $\lambda^{-1} = \lambda^2$, whereas $B^*B = \text{diag}(\mu^2, \nu^2)$ and $C^*C = \text{diag}(\sigma, \sigma^{-1})$.

- $\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & \tau \\
0 & \tau
\end{bmatrix}$, $(|\lambda| = |\tau| = 1)$.

Let $\begin{bmatrix}
\lambda & 0 \\
0 & \pm \lambda
\end{bmatrix} \rightarrow \tau [0 1 1]$; i.e., there exists an arbitrarily small perturbation $A := [0 0] + E$ of $[0 1 0]$ that is *congruent to $B := \lambda^{-1}\tau [0 1]$. This means that there exists a nonsingular S such that
\[
S^* \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} + E = \lambda^{-1}\tau \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
Equating the determinants of both sides, we find that
\[
r(1 + \varepsilon) = - (\lambda^{-1}\tau)^2, \quad r := \det(S^*S) > 0,
\]
in which ε is arbitrarily small. Since $-(\lambda^{-1}\tau)^2$ is fixed and $|\lambda^{-1}\tau| = 1$, we have $-(\lambda^{-1}\tau)^2 = -1$, and so $\lambda^{-1}\tau = \pm i$. Then $\text{rank}(B + B^*) = 1$, which is impossible since $A + A^*$ is *congruent to $B + B^*$ and $\text{rank}(A + A^*) = 2$.

REFERENCES

