2014

A note on characterization of the shorted operation

Edward Pekarev
edpekarev@yandex.ru

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
A NOTE ON CHARACTERIZATION OF THE SHORTED OPERATION∗

EDWARD L. PEKAREV†

Abstract. In this article, an alternative characterization of the shorted operation defined on the class of all positive operators on a Hilbert space is presented.

Key words. Hilbert space, Positive operator, Shorted operator.

AMS subject classifications. 47A63.

1. Introduction. Let \(\mathcal{H} \) be a Hilbert space and \(A \) be a (bounded linear) positive operator in \(\mathcal{H} \). Given a closed subspace \(\mathcal{L} \) of \(\mathcal{H} \) the shorted operator \(A_{\mathcal{L}} \) of a positive operator \(A \) to a subspace \(\mathcal{L} \) is defined as the maximum among all the positive operators belonging to the set

\[
\{ X; O \leq X \leq A, \text{ran} X \subseteq \mathcal{L} \},
\]

where \(\text{ran} X \) denotes the range of \(X \).

The existence of such a maximum was pointed out in 1947 by M.G. Krein [14] in connection with an extension problem of Hermitian positive semidefinite forms. Some properties of the correspondence \(A \mapsto A_{\mathcal{L}} \) (shorted operation) were studied in [24], where various applications to the theory of characteristic operator-functions were found [6, 21, 25]. In 1971, W.N. Anderson, Jr. rediscovered this operation, and investigated its fundamental properties for positive matrices [1]. In 1975, W.N. Anderson, Jr. and G.E. Trapp considered the shorted operation for positive operators in association with electrical network analysis [2]. The motivation for the further study of the shorted operation is clear because of its significance for operator theory. The notion of the shorted operator (or Schur complement) was generalized to selfadjoint operators on Hilbert spaces in 1979 by T. Ando [4], and later (2001–2004) by G. Corach together with his colleagues A. Maestripieri, P. Massey, and D. Stojanoff [7, 8, 17]. In 2007, the shorted operation was extended to \(J \)-selfadjoint operators in Krein spaces by A. Maestripieri and F.M. Peria [16], and in 2012 to nonnegative forms by Z. Sebestyen and T. Titkos [26]. The notion of the shorted operator for a not...
necessarily closed operator range was motivated by Lebesgue-type decompositions, due to T. Ando [3].

Some applications of the shorted operation to convex analysis, theory of operator means, quantum mechanical measurement, etc. were considered in [11, 12, 15, 18, 27].

In 1976, K. Nishio and T. Ando [19] characterized the shorted operation as well as the so-called parallel addition of positive operators. In particular, they described the shorted operation in terms of some concave type inequalities for a mapping defined on the class of all positive operators in Hilbert space. In this note our purpose is to present a characteristic property of this mapping in terms of the set of its fixed points.

2. Preliminaries. Given a Hilbert space H we denote by $B_+ = B_+(H)$ the set of all (linear bounded) positive operators on H, i.e., such Hermitian operators A that $(Af, f) \geq 0$ for all $f \in H$. For $A, B \in B_+$ we denote $A \leq B$ if $B - A \in B_+$, and in such a case, we denote $[A, B] = \{X \in B_+: A \leq X \leq B\}$.

Let $A^{\frac{1}{2}}$ stand for the unique positive square root of $A \in B_+$, $A^{-\frac{1}{2}}L$ – for the preimage of a set $L \subseteq H$ under $A^{\frac{1}{2}}$, $ranA = AH$ and let L^\perp denotes the closure of L in H. For $A, B \in B_+$ we use without further references the following equivalence relations arising from the well known results of R.G. Douglas [9] (see also [10]):

\[
\text{ran}A^{\frac{1}{2}} \subseteq \text{ran}B^{\frac{1}{2}} \iff A \leq \alpha B \text{ for some positive scalar } \alpha,
\]

\[
X \in [O, A] \iff X = A^{\frac{1}{2}}KA^{\frac{1}{2}} \text{ for some } K \in [O, I].
\]

We show, for the sake of completeness, that for given $A \in B_+$ and a (closed) subspace $L \subseteq H$, the operator $A_L := A^{\frac{1}{2}}P_MA^{\frac{1}{2}}$, where P_M is the orthoprojection onto $M = (A^{-\frac{1}{2}}L)^\perp$, really is the shorted operator of A to L (it was first proved by M.G. Krein [14]).

In fact, the operator A_L satisfies

\[
O \leq A_L \leq A \text{ and } ranA_L \subseteq ranA^{\frac{1}{2}}P_M \subseteq L.
\]

Besides, since for arbitrary $X \in [O, A]$ there exists such an operator $K \in [O, I]$ that $X = A^{\frac{1}{2}}KA^{\frac{1}{2}}$, the inclusion $ranX \subseteq L$ for a closed subspace L leads to

\[
ranA^{\frac{1}{2}}K^{\frac{1}{2}} = ran(A^{\frac{1}{2}}KA^{\frac{1}{2}})^{\frac{1}{2}} \subseteq L.
\]

That means $ranK \subseteq M$, and therefore, $K \leq P_M$, or $X \leq A_L$. Thus,

\[
(2.1) \quad A_L = A^{\frac{1}{2}}P_MA^{\frac{1}{2}} = \max\{X; O \leq X \leq A, ranX \subseteq L\}.
\]
Now, it is easy to verify the following well-known properties (see [3, 13, 22, 23]) of the correspondence $\pi_L : A \mapsto A_L$:

1) $O \leq A_L \leq A$;
2) $(\alpha A)_L = \alpha A_L$ for any nonnegative scalar α;
3) $(A_L)_L = A_L$;
4) $A_L + B_L \leq (A + B)_L$, where both $A, B \geq O$;
5) $(A^2)_L \leq (A_L)^2$.

Indeed, properties 1), 2) and 3) follow immediately from (2.1), as well as the property 4), in view of $A_L + B_L \leq A + B$, ran$(A_L + B_L) \subseteq L$.

Finally, if P_M and P_N are orthoprojectors onto the spaces $M = (A^{-1/2}L)^{-}$ and $N = (A^{-1}L)^{-}$, respectively, then $(I - P_M)A^{1/2}P_N = O$. This implies that

$$A^{1/2}P_N A^{1/2} = P_M A^{1/2}P_N A^{1/2}P_M \leq P_M A P_M,$$

and hence,

$$(A^2)_L = A P_N A \leq A^{1/2}P_M A P_M A^{1/2} = (A_L)^2.$$

The following necessary and sufficient conditions characterizing the shorted operation were obtained in [19].

Theorem 2.1. An operation $\pi(\cdot)$ on the class of all positive operators turns out to be the shorted operation to some closed subspace L, i.e., $\pi(A) = A_L$ for every positive operator A, if and only if it satisfies the following conditions:

1) $O \leq \pi(A) \leq A$;
2) $\pi(\alpha A) = \alpha \pi(A)$ for any nonnegative scalar α;
3) $\pi(\pi(A)) = \pi(A)$;
4) $\pi(A) + \pi(B) \leq \pi(A + B)$ for $A, B \in B_+$;
5) $\pi(A^2) \leq \pi(A)^2$;
6) $\pi(A + \pi(B)C\pi(B)) \leq \pi(A) + \pi(B)C\pi(B)$.

The shorted operation given by a subspace L is denoted as follows:

$$\pi_L(\cdot) : \pi_L(A) = A_L \quad (A \in B_+).$$

In what follows, $\Pi(B_+)$ mean the set of all operations $\pi(\cdot)$ on B_+, that satisfy conditions 1)–5) of Theorem 2.1. We collect several simple consequences of that
conditions in the following:

Lemma 2.2. Let an operation \(\pi(\cdot) \in \Pi(B_+) \) and let \(\mathcal{F}_\pi(\subseteq B_+) \) denote the set of all its fixed points. Then

(i) \(\pi(A_1) \leq \pi(A_2) \) whenever \(O \leq A_1 \leq A_2 \),

(ii) \(\pi(P) \) is an orthogonal projector whenever \(P \) is an orthogonal projector,

(iii) \(\mathcal{F}_\pi = \{ \pi(A) : A \in B_+ \} \neq \emptyset \),

(iv) if operators \(A, B \in \mathcal{F}_\pi \) and scalars \(\alpha, \beta \geq 0 \), then \(\alpha A + \beta B \in \mathcal{F}_\pi \).

Proof. (i) In view of the condition 4) under assumptions \(A = A_1, B = A_2 - A_1 \), we have:

\[
\pi(A_1) \leq \pi(A_1) + \pi(A_2 - A_1) \leq \pi(A_1 + (A_2 - A_1)) = \pi(A_2).
\]

(ii) In view of conditions 1) and 5), we obtain that if \(P \) is an orthogonal projector, then \(\pi(P) \leq P \leq I \) and

\[
\pi(P) = \pi(P^2) \leq \pi(P) \leq \pi(P) \leq \pi(P) \leq \pi(P) \leq \pi(P).
\]

Therefore, since \(O \leq \pi(P) = \pi(P)^2 \), the operator \(\pi(P) \) is an orthogonal projector.

(iii) Note that 2) implies \(\pi(O) = O \), and in view of 3) of Theorem 2.1, we arrive at

\[
\mathcal{F}_\pi = \{ \pi(A) : A \in B_+ \} \neq \emptyset.
\]

(iv) Given \(A, B \in \mathcal{F}_\pi \) and \(\alpha, \beta \geq 0 \), and having in view 1), 2), 4), we get:

\[
\alpha A + \beta B = \alpha \pi(A) + \beta \pi(B) \leq \pi(\alpha A + \beta B) \leq \alpha A + \beta B.
\]

Hence, \(\alpha A + \beta B = \pi(\alpha A + \beta B) \in \mathcal{F}_\pi \). □

We use the partial order \(\prec_r \) on \(B_+ \), defining \(A \prec_r B \) iff \(ran \alpha^\frac{1}{r} \subset ran B^\frac{1}{r} \). If \(A \prec_r B \) and \(B \prec_r A \), that is \(\lambda A \leq B \leq \mu A \) for some positive scalars \(\lambda, \mu \), such operators \(A, B \) are in the equivalence relation \(A \sim_r B \), or, in other words, they belong to the same so-called “Thompson component.” For \(\mathcal{F}_\pi \), we study some of its order-convex subsets, which can be divided into equivalence classes.

3. Results. Let an operation \(\pi(\cdot) \in \Pi(B_+) \), \(\mathcal{F}_\pi \) be the set of all its fixed points, and \(\mathcal{F}_\pi^co \subseteq \mathcal{F}_\pi \) consists exactly of such operators \(A \in \mathcal{F}_\pi \), that \([O, A] \subseteq \mathcal{F}_\pi \). As it is shown in the next section, \(\mathcal{F}_\pi^co \neq \mathcal{F}_\pi \) in general. Clearly, if \(A \simeq_r B \), then \(\pi(A) \simeq_r \pi(B) \), because using inequalities \(\lambda A \leq B \leq \mu A \) (\(\lambda, \mu \geq 0 \)) one can easily get the inequalities \(\lambda \pi(A) \leq \pi(B) \leq \mu \pi(A) \) (\(\lambda, \mu \geq 0 \)).

Besides, if \(A \in \mathcal{F}_\pi^co \) and \(B \simeq_r A \), then also \(B \in \mathcal{F}_\pi^co \). Indeed, if \([O, A] \subseteq \mathcal{F}_\pi^co \), then
Theorem 2.1. Let an operation \(\pi(\cdot) \in \Pi(B_+) \), and \(F_\pi \), \(F_\pi \) be the sets defined above. Then the following statements are equivalent:

1) \(\pi(\cdot) = \pi_L(\cdot) \) for some closed subspace \(L \subseteq H \);
2) \(\pi(I) \in F_\pi \);
3) \(F_\pi \) and \(F_\pi \) have the same largest element.

Proof. 1) \(\Rightarrow \) 2). If a closed subspace \(L \subseteq H \) is such that \(\pi(A) = A_L \) for every positive operator \(A \), then \(\pi(I) = I_L = P_L \), orthoprojection on \(L \), and it is clear in view of (2.1) that \([O, \pi(I)] = [O, P_L] \subseteq F_\pi \). This means that \(\pi(I) \in F_\pi \).

2) \(\Rightarrow \) 3). If \(A \in F_\pi \) and \(\alpha A = \pi(\alpha A) \leq \pi(I) \) for some \(\alpha > 0 \) then \(A \sim_r \alpha A \sim_r \pi(I) \). Thus, \(\pi(I) \) is the largest element in \(F_\pi \) and as \(\pi(I) \in F_\pi \), also \(\pi(I) \) is the largest element in \(F_\pi \).

3) \(\Rightarrow \) 1). Note that \(\pi(I) \) is an orthogonal projector in view of Lemma 2.2 (ii). Therefore, denoting \(L=\text{ran}\pi(I) \) we have \(\pi(I) = P_L \). To prove the equality \(\pi(A) = A_L \) for a given \(A \in B_+ \), find such \(\alpha > 0 \) that \(\alpha A \leq I \) and so \(\alpha \pi(A) \leq \pi(I) = P_L \). It follows that \(\text{ran}\pi(A) \subseteq L \), and as \(\pi(A) \leq A \) for \(\pi(\cdot) \in \Pi(B_+) \) it implies that \(\pi(A) \leq A_L \). But from \(O \leq A_L \leq A \) it follows \(\pi(A_L) \leq \pi(A) \) and it is sufficient to prove that \(\pi(A_L) = A_L \). Actually, \((\alpha A)_L \leq P_L = \pi(I) \), and therefore, \((\alpha A)_L \in [O, \pi(I)] \). But \(\pi(I) \) is the largest element in \(F_\pi \), as it was shown in the part 2) \(\Rightarrow \) 3). Therefore, \(\pi(I) \) is the largest element in \(F_\pi \) as well. Hence, \((\alpha A)_L \in [O, \pi(I)] \subseteq F_\pi , \pi(\alpha A_L) = \alpha A_L \) or \(\pi(A_L) = A_L \). This completes the proof.

Corollary 3.2. Let an operation \(\pi(\cdot) \in \Pi(B_+) \). Then \(\pi(\cdot) = \pi_L(\cdot) \) for some closed subspace \(L \subseteq H \) if and only if the conditions \(O \neq A \leq \pi(I) \) imply the inequality \(\pi(A) \neq O \) for every positive operator \(A \).

Proof. Let \(\pi(\cdot) = \pi_L(\cdot) \) with \(L=\text{ran}\pi(I) \) and \(O \neq A \leq \pi(I) \). Then \(\text{ran}A \subseteq L \), so \(A_L = A \), and hence, \(\pi(A) = A \neq O \).

Conversely, it is enough to show, that \([O, \pi(I)] \subseteq F_\pi \) under the assumption \(O \neq A \leq \pi(I) \Rightarrow \pi(A) \neq O \). On the other hand, for any \(X, O \leq X \leq \pi(I) \), in view of conditions 3) and 4) of Theorem 2.1, the following inequalities hold:
\[\pi(X) = \pi(X - \pi(X) + \pi(X)) \geq \pi(X - \pi(X)) + \pi(X) = \pi(X - \pi(X)) + \pi(X). \]

This implies that \(\pi(X - \pi(X)) = O \), and hence, \(\pi(X) = X. \]

4. Remarks. Given operators \(A, B \in B_+ \) T. Ando in [3] have considered the so-called Lebesgue-type decomposition \(A = C + D \) \((C, D \in B_+) \), where \(\text{ran} D = \{0\} \) and \(C \) is a limit of an increasing sequence \(\{C_n\}_{n=1}^{\infty} \subset B_+ \) satisfying the condition \(C_n \prec_r B \) \((n = 1, 2, \ldots) \). Among all of such operators \(C \) there exists the maximum. It depends only on the operator \(A \) and \(B \). Basic properties of the correspondence \(\pi_L \) of \(A \) were stated in [3, 22] and then in [13, 23]. In particular, the properties 1)–5) of Theorem 2.1 were established as well as the equalities

\[
A_L = A^\perp P_M A^\perp = \max \{X; O \leq X \leq A, (X^{-\perp}C)^- = H\},
\]

where \(P_M \) – the orthoprojection onto \(M = (A^{-\perp}C)^- \). At the same time, it is easy to see, that condition 6) of that theorem may be violated if the operator range \(L \) is not closed.

Indeed, let for some operator ranges \(L \) and \(M \) the equality \(A_L = A_M \) hold for all \(A \in B_+ \). Then \(L = M \) because if \((0 \neq f \in L, f \in M \) and \(A = P - \) the orthoprojection on the subspace spanned by \(f \), one can find in view of (4.1) that \(A_L = P, A_M = O \). So, \(L \subseteq M \), and as similarly \(M \subseteq L \), it follows \(L = M \). Therefore, if an operator range \(L \) is not closed and \(M \) is any closed subspace of \(H \), then shorted operations to \(L \) and \(M \) are not equal. Hence, the condition 6) of Theorem 2.1 fails.

Note also, that if the operator range \(L \subset H \), \(L \neq H \), is dense in \(H \), and \(\pi(A) = A_L \) \((A \in B_+) \), then \(\pi(I) = I \) is the maximum element of \(F_L \), but \([O, I] \) is not contained in \(F_L \), so \(F_L^\perp \neq F_L \) (compare with Theorem 3.1). Besides, if \(A, B \in B_+ \) and \(A \in F_L^\perp \), then \(B \in F_L^\perp \) and \(A \prec_r B \).

Acknowledgment. The author is very much indebted to the anonymous referees and Vadim E. Levit for their constructive and valuable comments and suggestions which greatly improve the presentation of this paper.

REFERENCES

A Note on Characterization of Shorted Operation 161