2013

Majorization bounds for signless Laplacian eigenvalues

A. Dilek Maden
drdilekgungor@gmail.com

A. Sinan Cevik

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1687
MAJORIZATION BOUNDS FOR SIGNLESS LAPLACIAN EIGENVALUES∗

A. DILEK MADEN† AND A. SINAN CEVIK†

Abstract. It is known that, for a simple graph G and a real number α, the quantity $s'_{\alpha}(G)$ is defined as the sum of the α-th power of non-zero singless Laplacian eigenvalues of G. In this paper, first some majorization bounds over $s'_{\alpha}(G)$ are presented in terms of the degree sequences, and number of vertices and edges of G. Additionally, a connection between $s'_{\alpha}(G)$ and the first Zagreb index, in which the Hölder’s inequality plays a key role, is established. In the last part of the paper, some bounds (included Nordhauss-Gaddum type) for signless Laplacian Estrada index are presented.

Key words. Signless Laplacian matrix, Signless Laplacian-Estrada index, (First) Zagreb index, Majorization, Strictly Schur-convex.

AMS subject classifications. 05C50, 15C12, 15F10.

1. Introduction and preliminaries. Let G be a simple graph with n vertices. The Laplacian matrix of G is defined by $L(G) = \Delta - A$, where A and Δ are the $(0,1)$-adjacency matrix and the diagonal matrix of the vertex degrees of G, respectively. We know that Laplacian spectrum of G consists of the eigenvalues $\mu_1, \mu_2, \ldots, \mu_n$ (arranged in non-increasing order) of $L(G)$. It is also known that $\mu_n = 0$ and the multiplicity of 0 is equal to the number of connected components of G. We may refer [26] and its citations for detailed properties of the Laplacian spectrum. On the other hand, the signless Laplacian matrix of G is defined by $Q(G) = \Delta + A$. We denote the eigenvalues of $Q(G)$ by $q_1 \geq q_2 \geq \cdots \geq q_n \geq 0$.

Let α be a real number. Then we denote by $s_\alpha(G)$ the sum of the α-th power of non-zero Laplacian eigenvalues of G. In other words,

$$s_\alpha = s_\alpha(G) = \sum_{i=1}^{t} \mu_i^\alpha,$$

where t is the number of non-zero Laplacian eigenvalues of G. In a similar manner,
the α-th power of the non-zero signless Laplacian eigenvalues of G is denoted by

$$s'_\alpha = s'_\alpha(G) = \sum_{i=1}^{h} q_i^\alpha,$$

where h is the number of non-zero signless Laplacian eigenvalues of G. In here, the cases $\alpha = 0$ and $\alpha = 1$ are trivial since $s'_0(G) = h$ and $s'_1(G) = 2m$, where m is the number of edges of G. In the literature, the bounds over quantities s_α and s'_α have been studied largely. For instance, in [30], Zhou established some properties of s_α for $\alpha \neq 0$ and $\alpha \neq 1$. He also discussed further properties by taking into account s_2 and s'_2. In fact, some of the results obtained in [30] are improved in [27]. Additionally, some bounds for $s_\alpha(G)$ related to degree sequences have been established in [31]. On the other hand, in [33], by taking G as a bipartite graph, some new bounds over $s_\alpha(G)$ have been given. In detail, lower and upper bounds for incidence energy, and also lower bounds for Kirchhoff index and Laplacian Estrada index have been deduced. Furthermore, Akbari et al. [1] obtained some relations between s_α and s'_α for the ranges $0 < \alpha \leq 1$, $1 < \alpha < 2$ and $2 \leq \alpha < 3$.

The Estrada index of a graph G with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ is defined as $EE = EE(G) = \sum_{i=1}^{n} e^{\lambda_i}$. It is very useful descriptors in a large variety of problems, including those in biochemistry and m complex networks [10, 11, 12]. (We also refer [14, 20, 29] for some recent results.) Further, in [13], the Laplacian-spectral counterpart of the Estrada index is defined as

$$LEE = LEE(G) = \sum_{i=1}^{n} e^{\mu_i}.$$ (One can also look at the studies [4, 8, 21, 31, 32] for more details on the theory of the Laplacian Estrada index.) The next step of LEE is termed as the signless Laplacian Estrada index $SLEE$ of G with n vertices which is defined as

$$SLEE = SLEE(G) = \sum_{i=1}^{n} e^{q_i}.$$

By [15, 16], since the Laplacian and signless Laplacian spectra of bipartite graphs coincide, we easily say that LEE and $SLEE$ coincide in the case of bipartite graphs. Therefore, since the vast majority of molecular graphs are bipartite, $SLEE$ gives nothing new outcomes relative to the previously studied LEE. On the other hand, chemically interesting case in which $SLEE$ and LEE differ are the fullerenes, fluoranthenes and other non-alternant conjugated species (see [3, 9, 21, 22, 23]).

In the next section, we present some majorization bounds for s'_α in terms of the degree sequences, and number of vertices and edges of a simple graph G. Moreover,
we establish a connection between $s'_\alpha(G)$ and the first Zagreb index. In the final section, we give some bounds (included Nordhauss-Gaddum type) for $SLEE$.

2. New bounds over s'_α. In this first main section, we will give some bounds on the quantities presented in (1.1) and (1.2).

For any two non-increasing sequences

$$x = (x_1, x_2, \ldots, x_n) \quad \text{and} \quad y = (y_1, y_2, \ldots, y_n),$$

we say that x is majorized by y, denoted by $x \preceq y$, if

$$\sum_{i=1}^{j} x_i \leq \sum_{i=1}^{j} y_i \quad \text{for} \quad j = 1, 2, \ldots, n-1, \quad \text{and} \quad \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i.$$

For a real-valued function f defined on a set in \mathbb{R}^n, if $f(x) < f(y)$ whenever $x \preceq y$ but $x \neq y$, then f is said to be strictly Schur-convex [25]. The following lemma makes clear the property of strictly Schur-convexity for the function f.

Lemma 2.1 ([25]). Let α be a real number such that $\alpha \neq 0$ and $\alpha \neq 1$.

(i) For $i = 1, 2, \ldots, h$, suppose $x_i \geq 0$. Then the following hold:

- $f(x) = \sum_{i=1}^{h} x_i^\alpha$ is strictly Schur-convex if $\alpha > 1$.
- $f(x) = -\sum_{i=1}^{h} x_i^\alpha$ is strictly Schur-convex if $0 < \alpha < 1$.

(ii) For $i = 1, 2, \ldots, h$, suppose $x_i > 0$. Then $f(x) = \sum_{i=1}^{h} x_i^\alpha$ is strictly Schur-convex if $\alpha < 0$.

We also remind that the degree sequence of G is a list of the degrees of the vertices in non-increasing order which is denoted by $(d) = (d_1, d_2, \ldots, d_n)$. We let denote $\overline{(d)} = (d_1 + 1, d_2, \ldots, d_{n-1}, d_n - 1)$, where d_1 is the maximum vertex degree of G. We similarly denote $(\mu) = (\mu_1, \mu_2, \ldots, \mu_n)$ and $(q) = (q_1, q_2, \ldots, q_n)$ as the spectrums of the Laplacian and signless Laplacian matrices, respectively.

Remark 2.2. In [17], Grone proved that if G has at least one edge, then $\overline{(d)} \preceq (\mu)$ is correct while $\overline{(d)} \preceq (q)$ is not. For example, if G is a connected non-bipartite graph with at least one pendant vertex, then

$$d_1 + 1 + d_2 + \cdots + d_{n-1} = 2m > q_1 + q_2 + \cdots + q_{n-1}$$

since G is non-bipartite (which implies $q_n > 0$).
It is well known that (see, for example, [25, p. 218]) the spectrum of a positive semi definite Hermitian matrix majorizes its main diagonal (when both are rearranged in non-increasing order). As a result of this, we can give the following proposition.

Proposition 2.3. For the graph G with signless Laplacian spectrum $(q) = (q_1, q_2, \ldots, q_n)$ and degree sequence $(d) = (d_1, d_2, \ldots, d_n)$, it is always true that $(d) \preceq (q)$.

We also need the following preliminary results for our main theorems in this paper.

Proposition 2.4 ([1]). Let G be a graph of order n and α be a real number. Then we have the following relations for the quantities in (1.1) and (1.2):

i) If $0 < \alpha \leq 1$ or $2 \leq \alpha \leq 3$, then $s'_{\alpha} \geq s_{\alpha}$.

ii) If $1 \leq \alpha \leq 2$, then $s'_{\alpha} \leq s_{\alpha}$.

On the other hand, for the quantity s_{α} in (1.1), it has been obtained the following lower and upper bounds in [31] by considering degree sequences.

Proposition 2.5 ([31]). Let G be a connected graph with $n \geq 2$ vertices.

(i) If $\alpha > 1$, then $s_{\alpha} \geq (d_1 + 1)^{\alpha} + \sum_{i=2}^{n-1} d_i^{\alpha} + (d_n - 1)^{\alpha}$.

(ii) If $0 < \alpha < 1$, then $s_{\alpha} \leq (d_1 + 1)^{\alpha} + \sum_{i=2}^{n-1} d_i^{\alpha} + (d_n - 1)^{\alpha}$.

Moreover, equalities hold in both cases if and only if $(q) = (d)$.

Proof. Suppose that $\alpha > 1$. Then, by Lemma 2.1-(i), $f(x) = \sum_{i=1}^{h} x_i^{\alpha}$ (such that
$x_i \geq 0$) is strictly Schur-convex which together with Proposition 2.3 implies that

$$s'_\alpha = \sum_{i=1}^{n} q_i^\alpha \geq d_1^\alpha + d_2^\alpha + \cdots + d_n^\alpha,$$

where equality holds if and only if $(q_1, q_2, \ldots, q_n) = (d_1, d_2, \ldots, d_n)$.

Now let us assume that $0 < \alpha < 1$. Then again, by Lemma 2.1(i), $f(x) = -\sum_{i=1}^{n} x_i^\alpha$ (such that $x_i \geq 0$) is strictly Schur-convex which implies that

$$-s'_\alpha = -\sum_{i=1}^{n} q_i^\alpha \geq -[d_1^\alpha + d_2^\alpha + \cdots + d_n^\alpha],$$

or equivalently,

$$s'_\alpha = \sum_{i=1}^{n} q_i^\alpha \leq d_1^\alpha + d_2^\alpha + \cdots + d_n^\alpha.$$

It is clear that the equality holds if and only if $(q_1, q_2, \ldots, q_n) = (d_1, d_2, \ldots, d_n)$.

Hence, the result. \(\Box\)

Using Lemma 2.1, it is easy to see the following result.

Corollary 2.7. Let G be a graph. Then the following inequalities hold:

a) If $\alpha > 1$ or $\alpha < 0$, then

$$\sum_{i=1}^{n} d_i^\alpha < (d_1 + 1)^\alpha + \sum_{i=2}^{n-1} d_i^\alpha + (d_n - 1)^\alpha.$$

(We should note that for the case $\alpha < 0$, we also need the assumption $d_i > 1$ or equivalently, G has no pendant vertices.)

b) If $0 < \alpha < 1$, then

$$\sum_{i=1}^{n} d_i^\alpha > (d_1 + 1)^\alpha + \sum_{i=2}^{n-1} d_i^\alpha + (d_n - 1)^\alpha.$$

We note that Theorem 2.6 can be converted to bipartite graphs as in the following.

Theorem 2.8. Let G be a connected bipartite graph with $n \geq 3$ vertices. If $\alpha > 1$, then

$$s'_\alpha \geq (d_1 + 1)^\alpha + \sum_{i=2}^{n-1} d_i^\alpha + (d_n - 1)^\alpha > \sum_{i=1}^{n} d_i^\alpha.$$
Proof. For the first inequality, by Lemma 2.1(i), \(f(x) = \sum_{i=1}^{h} x_i^\alpha \) is strictly Schur-convex for \(x_i \geq 0 \), where \(i = 1, 2, \ldots, h \). Since \(G \) is bipartite, it is known that \(q_n = 0 \), and \(Q(G) \) and \(L(G) \) share the same eigenvalues. Thus, by Remark 2.2 we obtain
\[
(d_1 + 1, d_2, \ldots, d_{n-1}, d_n - 1) \preceq (q_1, q_2, \ldots, q_n).
\]
Hence,
\[
s'_\alpha = \sum_{i=1}^{n} q_i^\alpha \geq (d_1 + 1)^\alpha + \sum_{i=2}^{n-1} d_i^\alpha + (d_n - 1)^\alpha,
\]
as required. We note that the second inequality follows immediately from Corollary 2.7(a).

From Lemma 2.1, Remark 2.2, Proposition 2.4 and Corollary 2.7, we get the following result.

Corollary 2.9. Let \(G \) be a graph. Therefore,

a) if \(0 < \alpha < 1 \), then \(s_\alpha < \sum_{i=1}^{n} d_i^\alpha \),

b) if \(1 < \alpha \), then \(s_\alpha > \sum_{i=1}^{n} d_i^\alpha \),

c) if \(2 \leq \alpha \leq 3 \), then \(s'_\alpha \geq (d_1 + 1)^\alpha + \sum_{i=2}^{n-1} d_i^\alpha + (d_n - 1)^\alpha \).

Recall that the first Zagreb index \(M_1(G) \) of the graph \(G \) is the sum of the squares of the degrees of vertices of \(G \). (One can find the details about this graph invariant in [19] and the references cited therein.) This index actually has been found in many applications, specially, in chemistry [19] and received wide investigations, and lots of properties of which have been reported (see [5, 7, 18, 28] for the details).

Now, by using the Hölder’s inequality, we only establish a lower bound for the quantity \(s'_\alpha \) given in (1.2) in terms of the first Zagreb index \(M_1(G) \). By using this theorem, we may have a chance to derive lots of bounds over \(s'_\alpha \) for a connected (molecular) graph \(G \) related to its number of vertices (atoms) and edges (bonds).

Theorem 2.10. Let \(G \) be a graph with \(n \) vertices and \(m \geq 1 \) edges. If \(\alpha < 0 \) or \(0 < \alpha < 1 \) or \(\alpha > 2 \), then
\[
s'_\alpha \geq \frac{(2m)^{2-\alpha}}{(M_1(G) + 2m)^{1-\alpha}}.
\]
Equality holds in (2.1) if and only if \(q_1 = q_2 = \cdots = q_n \). Furthermore, if \(1 < \alpha < 2 \), then the inequality in (2.1) is reversed.

Proof. Let \(x_1, x_2, \ldots, x_s \) be positive real numbers, and let \(p \) be a real number with \(p \neq 0, p \neq \frac{1}{2}, p \neq 1 \). If \(p < 0 \) or \(p > 1 \), then \(\frac{2p-1}{p-1} > 1 \). By Hölder's inequality, we have

\[
\sum_{i=1}^{s} x_i^p = \sum_{i=1}^{s} x_i^{\frac{p}{p-1}} \frac{2p-1}{p} x_i^{1-\frac{p}{p-1}} \leq \left(\sum_{i=1}^{s} x_i^p \right)^{\frac{p-1}{p}} \left(\sum_{i=1}^{s} x_i^{2p} \right)^{\frac{p}{p-1}} \cdot
\]

Shortly, we get

\[
\left(\sum_{i=1}^{s} x_i^p \right)^{\frac{p}{p-1}} \geq \left(\sum_{i=1}^{s} x_i^{2p} \right)^{\frac{p-1}{p}}
\]

Thus,

\[
(2.2) \quad \sum_{i=1}^{s} x_i \geq \frac{\left(\sum_{i=1}^{s} x_i^{p} \right)^{\frac{2p-1}{p}}}{\left(\sum_{i=1}^{s} x_i^{2p} \right)^{\frac{p-1}{p}}}
\]

where the equality holds if and only if \(x_1 = x_2 = \cdots = x_s \).

Now if we write \(s = n, x_i = q_i^\alpha \) and \(p = \frac{1}{\alpha} \) in (2.2), then (2.1) follows immediately when \(\alpha < 0 \) or \(0 < \alpha < 1 \) since \(s_1' (G) = 2m \) and \(s_2' (G) = M_1 (G) + 2m \). Furthermore the equality in (2.1) holds if and only if \(q_1 = q_2 = \cdots = q_n \). The proofs for the cases \(\alpha > 2 \) and \(1 < \alpha < 2 \) are similar (here, take \(0 < p < \frac{1}{2} \) and \(\frac{1}{2} < p < 1 \), respectively).

Example 2.11. Together with some known bounds for the first Zagreb index [5], [7], [18], [28], the bound in (2.1) may directly yield a lot different bounds for \(s_\alpha' \). For example, let us consider the bound [5]

\[
M_1 (G) \leq m \left(\frac{2m}{n-1} + n - 2 \right)
\]
for the first Zagreb index. This bound implies that, if \(\alpha < 0 \) or \(0 < \alpha < 1 \) (resp., \(1 < \alpha < 2 \)), then

\[
\langle s' \rangle_A \geq (\text{resp., } \leq) \frac{2m}{\left(\frac{m}{n-1} + \frac{n}{2}\right)^{1-\alpha}}.
\]

Example 2.12. Suppose that \(G \) is \(K_{r+1} \)-free with \(2 \leq r \leq n-1 \). Then

\[
M_1(G) \leq \frac{2r-2}{r} nm
\]

such that equality holds if and only if \(G \) is complete bipartite graph for \(r = 2 \), and a regular complete \(r \)-bipartite graph for \(r \geq 3 \) (cf. [28]). This yields that if \(\alpha < 0 \) or \(0 < \alpha < 1 \) (resp., \(1 < \alpha < 2 \)), then

\[
\langle s' \rangle_A > (\text{resp., } <) \frac{2m}{\left(\frac{r-1}{r}n + 1\right)^{1-\alpha}}.
\]

We need the next lemma for another result over \(s' \).

Lemma 2.13. We have

\[
\sum_{i=1}^{n} d_i^\alpha \geq n^{1-\alpha} \left(2m\right)^\alpha \quad \text{if } \alpha < 0 \text{ or } \alpha > 1
\]

\[
\leq n^{1-\alpha} \left(2m\right)^\alpha \quad \text{if } 0 < \alpha < 1
\]

Proof. Observe that for \(x > 0 \), the function \(x^\alpha \) is strictly convex if and only if \(\alpha < 0 \) or \(\alpha > 1 \). Hence, let us suppose that \(\alpha < 0 \) or \(\alpha > 1 \). Then

\[
\left(\sum_{i=1}^{n} \frac{1}{d_i}\right)^\alpha \leq \sum_{i=1}^{n} \left(\frac{1}{d_i}\right)^\alpha,
\]

and in other words,

\[
\sum_{i=1}^{n} d_i^\alpha \geq \frac{1}{n^{\alpha-1}} \left(\sum_{i=1}^{n} d_i\right)^\alpha = n^{1-\alpha} \left(2m\right)^\alpha,
\]

as required. \(\square \)

From Theorem 2.6 and Lemma 2.13 we obtain the following consequence.

Corollary 2.14. Let \(G \) be a graph with \(n \) vertices and \(m \) edges. Then for the ranges \(0 < \alpha < 1 \) and \(\alpha > 1 \), we obtain the bounds

\[
s'_{\alpha} \leq n \left(\frac{2m}{n}\right)^\alpha \quad \text{and} \quad n \left(\frac{2m}{n}\right)^\alpha \leq s'_{\alpha},
\]
respectively.

The following lemma will be needed for a new bound over \(s'_{\alpha} \) (see Theorem 2.16 below).

Lemma 2.15 ([6]). Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Then \(q_1 \geq \frac{4m}{n} \) with equality if and only if \(G \) is a regular graph.

Theorem 2.16. Let \(G \) be a connected graph with \(n \geq 3 \) vertices and \(m \) edges.

i) If \(\alpha < 0 \) or \(\alpha > 1 \), then

\[
s'_{\alpha} \geq \left(\frac{2m}{n} \right)^{\alpha} (2^{\alpha} + n - 2).
\]

ii) If \(0 < \alpha < 1 \), then

\[
s'_{\alpha} \leq \left(\frac{2m}{n} \right)^{\alpha} (2^{\alpha} + n - 2).
\]

Proof. As in the proof of Lemma 2.13 it is clear that \(x^\alpha \) (where \(x > 0 \)) is a strictly convex function if and only if \(\alpha < 0 \) or \(\alpha > 1 \). Therefore, let us suppose that \(\alpha < 0 \) or \(\alpha > 1 \). We then have

\[
\sum_{i=2}^{n-1} q_i^{\alpha} \geq \frac{1}{(n-2)^{\alpha-1}} \left(\sum_{i=2}^{n-1} q_i \right)^{\alpha},
\]

where the equality holds if and only if \(q_2 = \cdots = q_{n-1} \). It follows that

\[
s'_{\alpha} \geq q_1^{\alpha} + q_n^{\alpha} + \frac{1}{(n-2)^{\alpha-1}} \left(\sum_{i=2}^{n-1} q_i \right)^{\alpha} = q_1^{\alpha} + q_n^{\alpha} + \left(\frac{2m - q_1 - q_n}{n-2} \right)^{\alpha}.
\]

Now let us consider the function \(f(x, y) = x^\alpha + y^\alpha + \left(\frac{2m-x-y}{n-2} \right)^\alpha \), for \(x > 0, \ y > 0 \). In order to find its minimum, we have the following derivations for this function:

\[
f_x = \alpha \left[x^{\alpha-1} - \frac{(2m-x-y)^{\alpha-1}}{(n-2)^{\alpha-1}} \right], \quad f_y = \alpha \left[y^{\alpha-1} - \frac{(2m-x-y)^{\alpha-1}}{(n-2)^{\alpha-1}} \right],
\]

\[
f_{xx} = \alpha (\alpha - 1) \left[x^{\alpha-2} + \frac{(2m-x-y)^{\alpha-2}}{(n-2)^{\alpha-1}} \right], \quad f_{xy} = f_{yx} = \alpha (\alpha - 1) \left(\frac{2m-x-y}{n-2} \right)^{\alpha-2}
\]

and

\[
f_{yy} = \alpha (\alpha - 1) \left[y^{\alpha-2} + \frac{(2m-x-y)^{\alpha-2}}{(n-2)^{\alpha-1}} \right].
\]
A simple calculation implies that
\[f_x = f_y = 0 \implies (n-1) x + y = 2m \text{ and } x + (n-1) y = 2m \implies x + y = \frac{4m}{n}. \]
For \(x + y = \frac{4m}{n} \), we clearly get \(f_{xx} > 0 \) and \(f_{xx} f_{yy} - f_{xy}^2 > 0 \).

From above, it is concluded that \(f(x, y) \) has a minimum value at \(x + y = \frac{4m}{n} \) and that the minimum value is
\[x^\alpha + \left(\frac{4m}{n} - x \right)^\alpha + \left(\frac{2m - 4m}{(n-2)\alpha} \right)^\alpha. \]
By Lemma 2.15 \(q_1 \geq \frac{4m}{n} \).

Hence, the result. \(\square \)

Remark 2.17. One can easily see that the bounds in Theorem 2.16 are better than the bounds in Corollary 2.14.

One can also consider the next lemma.

Lemma 2.18 ([2]). Let \(G \) be a graph on \(n \) vertices. Then \(q_1 \geq 2(k-1) \) where \(k \) is the chromatic number. Equality holds if and only if \(G \cong K_n \) or \(G \) is the cycle \(C_n \) of odd length.

Hence, as a consequence of Theorem 2.16 and Lemma 2.18 we get the following corollary.

Corollary 2.19. Let \(G \) be a connected graph with \(n \geq 3 \) vertices and \(m \) edges.
\[i) \] If \(\alpha < 0 \) or \(\alpha > 1 \), then
\[s'_\alpha \geq 2^\alpha \left[(k-1)^\alpha + \left(\frac{2m}{n} - k + 1 \right)^\alpha + \left(\frac{m}{n} \right)^\alpha (n-2) \right]. \]
\[ii) \] If \(0 < \alpha < 1 \), then
\[s'_\alpha \leq 2^\alpha \left[(k-1)^\alpha + \left(\frac{2m}{n} - k + 1 \right)^\alpha + \left(\frac{m}{n} \right)^\alpha (n-2) \right]. \]

3. **Bounds for signless Laplacian Estrada index.** Let \(G \) be a graph with \(n \) vertices. We recall that, for a non-negative integer \(k \) and the eigenvalues \(q_1 \geq q_2 \geq \cdots \geq q_n \) of \(Q(G) \),
\[
T_r(G) = \sum_{i=1}^{n} q_i^r
\]
denotes the \(r \)-th signless Laplacian spectral moment of \(G \). Obviously, \(T_0 \left(G \right) = n \) and \(T_r \left(G \right) = s'_r \) for \(r \geq 1 \). In fact, (3.1) will also be needed in our results.

By [2], it is obvious that \(\text{SLEE} \) in (1.4) can be written as

\[
\text{SLEE} = \sum_{i=0}^{\infty} \frac{T_r}{r!},
\]

where \(T_r \) is defined as in (3.1). In this section, we claim to convert the properties and obtained results in the previous section into the signless Laplacian Estrada index.

Theorem 3.1. Let \(G \) be a graph with \(n \geq 2 \) vertices. Then

\[
\text{SLEE} \geq \sum_{i=1}^{n} e^{d_i}.
\]

Moreover, the equality holds in above if and only if \((q) = (d)\).

Proof. We know that \(T_0 = n, T_1 = 2m, \)

\[
T_2 = \sum_{i=1}^{n} d_i (d_i + 1) = M_1 \left(G \right) + 2m
\]

and \(T_r = s'_r \left(G \right) \) for \(r \geq 1 \). By Theorem 2.6 (i),

\[
T_r \geq \sum_{i=1}^{n} d'_i \quad \text{for} \quad r = 0, 1
\]

such that equality holds for \(r = 0, 1 \). Thus,

\[
\text{SLEE} = \sum_{r \geq 0} \frac{T_r}{r!} \geq \sum_{r \geq 0} \frac{\sum_{i=1}^{n} d_r}{r!} = \sum_{i=1}^{n} e^{d_i},
\]

as desired. \(\square \)

Theorem 3.2. Let \(G \) be a graph with \(n \geq 2 \) vertices and \(m \) vertices. Then

\[
\text{SLEE} \leq n + 2m - 1 - \sqrt{M_1 \left(G \right) + 2m} + e^{\sqrt{M_1 \left(G \right) + 2m}}
\]

with equality holding if and only if at most one of \(q_1, q_2, \ldots, q_n \) is non-zero.

Proof. It is well known that \(\sum_{i=1}^{n} q_i^2 = M_1 \left(G \right) + 2m \). For an integer \(r \geq 3 \),

\[
\left(\sum_{i=1}^{n} q_i^2 \right)^r \geq \sum_{i=1}^{n} q_i^{2r} + \sum_{1 \leq i < j \leq n} \left(q_i^{2(r-1)} q_j^{2(r-1)} + q_i^{2(r-1)} q_j^{2} \right) \geq \sum_{i=1}^{n} q_i^{2r} + 2r \sum_{1 \leq i < j \leq n} q_i q_j^n \geq \left(\sum_{i=1}^{n} q_i^2 \right)^2,
\]

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 26, pp. 781-794, November 2013
and then,

\[\sum_{i=1}^{n} q_i^r \leq \left(\sum_{i=1}^{n} q_i^2 \right)^{\frac{r}{2}} = (M_1(G) + 2m) \]

with equality holding if and only if at most one of \(q_1, q_2, \ldots, q_n \) is non-zero.

It is easily seen that

\[
SLEE = n + 2m + \sum_{r \geq 2} \frac{1}{r!} \left(\sum_{i=1}^{n} q_i^r \right) \leq n + 2m + \sum_{r \geq 2} \frac{1}{r!} \left(\sqrt{M_1(G) + 2m} \right)^r
\]

\[
= n + 2m - 1 - \sqrt{M_1(G) + 2m} + e \sqrt{M_1(G) + 2m}.
\]

Finally, we will give a Nordhauss-Gaddum type bound for \(SLEE \).

Theorem 3.3. Let \(G \) be a graph with \(n \geq 2 \) vertices and \(m \) edges. Also let \(\overline{G} \) be the complement of \(G \). Then

\[
SLEE(G) + SLEE(\overline{G}) > 2 \left[e^{n-1} + (n-2) e^{\frac{n-1}{2}} \right].
\]

Proof. By the arithmetic-geometric inequality, we have

\[
SLEE = e^{q_1} + e^{q_2} + \cdots + e^{q_n} \geq e^{\frac{4m}{n}} + (n-2) e^{\frac{2m}{n}} + 1
\]

(cf. [2]). Let \(\overline{m} \) be the number of edges of \(\overline{G} \). Thus,

\[
SLEE(G) + SLEE(\overline{G}) \geq 2 + e^{\frac{4m}{n}} + e^{\frac{2m}{n}} + (n-2) \left(e^{\frac{4m}{n}} + e^{\frac{2m}{n}} \right)
\]

\[
\geq 2 + 2e^{\frac{2(m+\overline{m})}{n}} + 2(n-2) e^{\frac{m+\overline{m}}{n}}
\]

\[
= 2 + 2e^{(n-1)} + 2(n-2) e^{\frac{n-1}{2}}
\]

\[
> 2e^{n-1} + 2(n-2) e^{\frac{n-1}{2}}.
\]

Hence, the result. \(\square \)

Acknowledgment. Both authors are grateful to the referee for his careful reading and then suggested valuable corrections that certainly improved the quality of the paper.
REFERENCES

