1-1-1994

Postfire Plant Establishment: The Effects of Environment, Prefire Vegetation, Fire Severity, and Landscape Position

Kathleen M. Doyle
University of Wyoming

Dennis H. Knight
University of Wyoming

Follow this and additional works at: http://repository.uwyo.edu/uwnpsrc_reports

Recommended Citation

Doyle, Kathleen M. and Knight, Dennis H. (1994) "Postfire Plant Establishment: The Effects of Environment, Prefire Vegetation, Fire Severity, and Landscape Position," University of Wyoming National Park Service Research Center Annual Report: Vol. 18 , Article 10. Available at: http://repository.uwyo.edu/uwnpsrc_reports/vol18/iss1/10

This Grand Teton National Park Report is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in University of Wyoming National Park Service Research Center Annual Report by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
POSTFIRE PLANT ESTABLISHMENT:
THE EFFECTS OF ENVIRONMENT, PREFIRE VEGETATION, FIRE SEVERITY, AND LANDSCAPE POSITION

KATHLEEN M. DOYLE + DENNIS H. KNIGHT
DEPARTMENT OF BOTANY + UNIVERSITY OF WYOMING
LARAMIE

INTRODUCTION

The initial species composition and conditions following disturbance are crucial to determining the long-term development of vegetation (Egler 1954, Glenn-Lewin et al. 1992). Thus, an understanding of early succession can provide insights into the mosaic of vegetation types that will emerge on a landscape. Observations in the Rocky Mountains and elsewhere indicate that postfire vegetation patterns vary considerably. It is now known that numerous factors simultaneously contribute to the species composition of pioneer vegetation (Stahelin 1943, Cattelino et al. 1979, Glenn-Lewin 1980, Noble and Slatyer 1980, Keever 1983, Walker and Chapin 1987, Pickett 1989, Westoby et al. 1989, Glenn-Lewin et al. 1992), and often different patterns of early succession are possible even on sites that are similar. While research on the distribution of late successional vegetation along environmental and disturbance gradients has been a dominant theme in plant ecology (Daubenmire 1943, Whittaker 1956, Despain 1973, Loope and Gruell 1973, Whipple and Dix 1979, Peet 1981, Romme and Knight 1981, Wentworth 1981, Veblen 1986, Allen and Peet 1990), few studies have directly investigated the factors that affect the distribution of pioneer plant communities. Moreover, the influence of landscape structure on the development of vegetation mosaics has only recently been considered (Milne and Forman 1986, Turner et al. unpublished manuscript). Studies designed to understand vegetation patterns following disturbance could be improved by considering site history and the character of the surrounding landscape as well as the effects of site features.

We have initiated research to consider the effect of various spatial, historical and site factors on early postfire vegetation in Grand Teton National Park (GTNP) and the adjacent Bridger-Teton National Forest. Specifically, we are studying the relationships between characteristics of early succession and fire severity, geologic substrate, soil characteristics, mean burn patch size, prefire canopy composition, cone serotiny, topographic position, distance to unburned vegetation, and the vegetation composition and fire severity of the surrounding landscape. Our research objectives are to: 1) determine the range of variability in the patterns of early postfire succession; 2) determine which environmental and historical variables are most important in controlling vegetation development following fire; 3) elucidate the importance of landscape position and between-patch interactions during early postfire succession; 4) develop a series of multivariate models that will predict the characteristics of early succession in different situations; 5) project, based on existing literature, the
most probable trajectories of each pioneer community type.

An important component of our research is to examine the influence of landscape context on early successional vegetation. Understanding and predicting the behavior of organisms requires the consideration of a broad environmental matrix, not simply the autecology of the organisms (Rowe 1981). According to Glenn-Lewin and van der Maarel (1992), spatial attributes such as landscape complexity, community isolation, and the spatial scale of disturbance are important factors influencing succession. We will use GRASS-GIS, to better understand the relationship between site characteristics and pioneer vegetation pattern (Davis and Dozier 1990, Davis and Goetz 1990) as well as to elucidate the importance of landscape position in early succession.

STUDY AREA

A large number of geologic, topographic and hydrologic controls occur in close proximity in the Teton region. Much of the variability in site conditions that is characteristic of the Teton region is represented in 6 sites that have burned during the last two decades. The burns we are studying are known as the 1988 Huck Fire, the 1988 Hunter Fire, the 1987 Dave Adams Hill Fire, the 1985 Beaver Creek Fire, the 1981 Mystic Isle Fire, and the 1974 Waterfalls Canyon fire. The fires range in size from a minimum of 400 ha for the Beaver Creek Fire to greater than 32,400 ha for the Huck Fire. Elevation within the various burns ranges from approximately 2040 m to 2900 m. Fire severity within each burn varies from severe crown burning to light surface burns. The majority of the region’s major vegetation types are represented within the burns.

A variety of different substrate types are exposed within the six burned areas (Table 1). For example, within the Waterfalls Canyon fire are some of the oldest rocks of the Tetons, Precambrian gneiss, as well as sandstone, limestone and siltstone dating to the Paleozoic Era and glacial deposits dating to the Quaternary. Glacial deposits also are found in the Mystic Isle and Beaver Creek sites. Within the boundaries of the Hunter, Dave Adams Hill, and Huck fires are volcanic substrates, landslide debris, and different Mesozoic sedimentary rocks (including shales, sandstone, dolomitic siltstone and claystone; Love et al. 1992).

Methods

Vegetation Data

We have adopted a standard sampling design whereby three rectangular plots (30 m x 5 m) are located within each stand, although the number and size of plots varies depending on seedling density, patch size, and variability within the stand. To sample the composition of the understory, ten quadrants (50 cm x 20 cm) are sampled within each plot. A complete species list has been compiled for each plot and the following plant data have been obtained:

a. Postfire tree establishment and survivorship: The density and height class by species of all live tree seedlings and saplings that established following the fire. For each species, the number of individuals that appear to have survived the fire (based on estimating tree age) have been recorded.

b. Estimate of prefire vegetation: The dbh (at 1.37 m) of all standing dead trees by species. Wood samples have been collected for anatomical analysis to verify the identification of dead trees. Wherever possible, the understory composition of nearby unburned forests (with similar site characteristics) has been recorded.

c. Percent cone serotiny: The prefire serotiny of *P. contorta*, if present, has been estimated.
using the techniques developed by Tinker et al.
(1994) or by determining percent serotiny in nearby
unburned stands that are similar in site
characteristics.

d. Percent cover of understory species: The
percent cover of all herbaceous and shrub species has
been estimated by cover class using the Daubenmire
canopy coverage method (Daubenmire 1959), and the
percent cover of all large shrub species has been
estimated using the line-intercept method (Mueller-
Dombois and Ellenberg 1974).

ENVIRONMENTAL DATA

In addition to plant data, the following
environmental data have been collected for each
plot:

a. Slope, aspect, elevation, and landform
type [concave slope, ridgetop etc].

b. Distance to unburned forest, distance to
ridgetop, distance to stream [either measured or
estimated from topographic maps or aerial photos].

c. Percent of the soil surface that is bedrock,
boulders, cobbles, gravel, soil, and dead wood.

d. Geologic substrate and soil type
determined from field inspection and available
maps, e.g., Young (1982), Love et al. (1992).

e. Fire severity, classified as severe,
moderate or light [the criteria used to classify fire
severity includes the degree to which branches were
consumed by the fire, the consumption of leaf litter,
charring of logs on the ground, and the density of
surviving trees within the stand; See Bradley et al.
(1992)].

f. Soil analyses [three soil samples have
been collected and pooled for each plot for
subsequent analysis of texture and chemical
composition].

g. Weather patterns for the years following
each fire [compiled from data collected at weather
stations in GTNP].

DEVELOPMENT OF GIS DATABASES

A primary goal of our research is to
demonstrate the correspondence that exists between
early successional vegetation patterns and
environmental and landscape features. To
understand these relationships and to test our
hypotheses, we will use a variety of techniques
including GRASS-GIS, multivariate analyses, and
statistics.

The following map layers will be included
in the GRASS-GIS databases: elevation, aspect,
slope (derived from a digital elevation model),
geology, soils, hydrology, habitat type (available for
all but the Hunter Fire), prefire vegetation type, and
burn pattern (digitized from aerial photography).
Vegetation and other environmental data from
stands that we sample will also be added to the
databases. From the original maps, measures of
landscape structure will be generated using the r.le
programs developed by Baker and Cai (1992),
including diversity of vegetation types, mean patch
size, dominance of burn severity class, distance to
streets, distance to ridgetop, and distance to
unburned forest.

PROGRESS REPORT

In a previous study (Doyle 1994), we
analyzed data collected from permanent plots located
in severe and moderate burns of the 1974 Waterfalls
Canyon Fire in GTNP. Qualitative differences in
species richness, life-history characteristics, percent
cover of the understory, and density of postfire tree
establishment were observed between areas that
burned with different intensity. For both moderately
and severely burned areas, the initial floristic
composition appears to be important in shaping
long-term development of the vegetation. Based on
a comparison of the burned areas with older adjacent
stands, various pathways of succession could be
identified.

While conducting the Waterfalls Canyon
study, we realized that a few permanent plots did not
represent the wide range of variability in post-fire
succession found in GTNP. Thus, during the
summers of 1992-1994, we collected data from
stands that had burned within the last two decades.
These 80 stands represent much of the topographic
and geologic variability within the six study areas
(Table 1). In 1994, in addition to sampling 17 new
stands, we collected additional data from previously
sampled stands. These data include information on
burn severity, as well as prefire stand characteristics
such as percent serotiny and species composition
prior to fire.

The following maps have been digitized and
encompass most of the area within the six burned
areas: geology, habitat type, vegetation cover type,
soils, elevation, aspect, slope, and hydrology. Also,
using GRASS-GIS we have completed a preliminary landscape classification of the Dave Adams Hill Fire. Maps of geology, slope, aspect, elevation and burn mosaic were used to classify the landscape and the resulting classification appeared to be ecologically meaningful. We are continuing to digitize the burn mosaic from aerial photos for each of the other five study areas, and will be developing a landscape classification for each of the six study areas using the following map layers: geology, soils, slope, aspect, elevation, burn mosaic, distance to streams, and prefire vegetation.

In 1995 we will finish our data collection and concentrate on data analysis and development of our GIS database. We expect that the results of this research will provide a better understanding of vegetation patterns in the region and the influence of landscape context on early successional vegetation after fire. Our study complements ongoing research being conducted in Yellowstone National Park and will aid resource managers in managing for natural ecosystem processes.

ACKNOWLEDGEMENTS

This research has been supported by grants from the UW-NPS Research Station and the NPS-Rocky Mountain Regional Office. The accommodations and facilities provided by the UW-NPS Research Station are gratefully acknowledged. We also appreciate the assistance and logistical support provided by Grand Teton National Park and the Bridger-Teton National Forest. We thank Laura Archer, Joan Doyle, James Graves, James Krumm, Kevin Vaughan and Susan Wiser for help with fieldwork.

LITERATURE CITED

