Lattice-points enumeration in polytopes: Study of the coefficients of the Ehrhart quasi-polynomial
Outline:

1. Polytopes, convex hull
2. Why do we care?
3. Counting lattice points in polytopes
4. The periods of the Ehrhart quasi polynomial
1. Polytopes, convex hull
Integer dilates of polytopes: family of polytopes

The unit square and its 3rd dilate. If we let P to be the unit square (side length of 1), then $3P$ is the square of side length of 3.
2. Why do we care?

- A lot of problems boil down to finding integer solutions to a problem or knowing if there is a solution at all.

- A typical example:
 Suppose you want to load elephants and giraffes on a plane

![Elephant](image1.png) 3,000 kg
![Giraffe](image2.png) 1,000 kg
![Plane](image3.png) 8,000 kg

How many elephant and giraffes can we put on the plane? Or, how many integer solutions do we have to:

\[3,000 \times E + 1,000 \times G \leq 8,000 \]

where \(E, G \geq 0 \).
In general we have:

\[k_1x_1 + k_2x_2 + \cdots + k_jx_j \leq n \]

with \(x_1, x_2, \ldots, x_j \) the number of \(j \) types of animals of weight \(k_1, k_2, \ldots, k_j \) with; and \(n \) the weight capacity of the plane.
3. Counting lattice points in polytopes

a. Integer polytopes

- The vertices have all integer coordinates

- The Ehrhart function:
 \[ehr_P(n) = \text{number of lattice points in } nP \]
Example

We have:
\[ehr_p(1) = \text{# of lattice points in the unit square } C = 4 \]
\[ehr_p(2) = \text{# of lattice points in } 2C = 9 \]
\[ehr_p(3) = \text{# of lattice points in } 3C = 16 \]
\[ehr_p(4) = 25 \]
\[ehr_p(5) = 36 \]

In general,
\[ehr_p(n) = (n + 1)^2 = n^2 + 2n + 1 \]

Theorem:

If \(P \) is an integer polytope, then \(ehr_p(n) \) is a polynomial in \(n \). That is,
\[ehr_p(n) = a_t n^t + a_{t-1} n^{t-1} + \cdots + a_1 n + a_0 \]
for some constants \(a_0, a_1, \ldots, a_{t-1}, a_t \in \mathbb{R} \).
b. Rational polytopes

- The vertices have all rational coordinates. That is, they can be written as fractions.

- Again, $ehr_P(n) = \text{number of lattice points in } nP$
Let l be the segment $[0, \frac{1}{3}]$. Then

$$ehr_l(n) = \left\lfloor \frac{n}{\frac{1}{3}} \right\rfloor + 1$$

where $[x]$ is the biggest integer smaller or equal to x. Then $[3.5] = 3$ and $[3] = 3$.

$$ehr_l(1) = 1 = \left\lfloor \frac{1}{\frac{1}{3}} \right\rfloor + 1$$
$$ehr_l(2) = 1 = \left\lfloor \frac{2}{\frac{1}{3}} \right\rfloor + 1$$
$$ehr_l(3) = 2 = \left\lfloor \frac{3}{\frac{1}{3}} \right\rfloor + 1 = [1] + 1$$
$$ehr_l(4) = 2 = \left\lfloor \frac{4}{\frac{1}{3}} \right\rfloor + 1$$
$$ehr_l(5) = 2 = \left\lfloor \frac{5}{\frac{1}{3}} \right\rfloor + 1$$
$$ehr_l(6) = 3 = \left\lfloor \frac{6}{\frac{1}{3}} \right\rfloor + 1 = [2] + 1$$

Then, $ehr_l(n) = \frac{1}{3} n + a(n)$

where $a(n) = \left\lfloor \frac{n}{\frac{1}{3}} \right\rfloor - \frac{n}{\frac{1}{3}} + 1$
Theorem:

If P is an rational polytope, then $ehr_P(n)$ is a quasi-polynomial in n.
That is,

$$ehr_P(n) = a_t(n)n^t + a_{t-1}(n)n^{t-1} + \cdots + a_1(n)n + a_0(n)$$
for some periodic functions $a_0(n), a_1(n), \ldots, a_{t-1}(n), a_t(n)$

Definition

In \mathbb{R}^3 we say that P has period sequence (s_3, s_2, s_1, s_0) if the minimum period of
the coefficients $a_3(n), a_2(n), a_1(n), a_0(n)$ is s_i for $i = 0, 1, 2, 3$, where

$$ehr_P(n) = a_3(n)n^3 + a_2(n)n^2 + a_1(n)n + a_0(n)$$

Theorem:

In \mathbb{R}^3, $s_3 = 1$ for any polytope P. In general, in \mathbb{R}^t, $s_t = 1$ and $a_t(n) = constant$.
4. The periods of the Ehrhart quasi-polynomials

a. Results!

Theorem (Rochais, 2015)

- Given positive integer s, and t there exist convex polytope $Q, P \subseteq \mathbb{R}^n$ with period sequences $(1, 1, \ldots, 1, s, 1)$ and $(1, 1, \ldots, 1, t)$.

- Given positive integer u, there exists a non-convex polytope $B \subseteq \mathbb{R}^n$ with period sequence $(1, u, 1, 1, \ldots, 1)$ provided that $1 \leq n \leq 13$, and $n \neq 12$.

- In particular, in \mathbb{R}^3: given positive integers s, t and u, there exist a non-convex polytope H with period sequence $(1, u, s, t)$.
b. A polytope of period sequence \((1, 1, 1, t)\)

Let \(P = \text{conv}\{(0,0,0), (1,0,0), (0,1,0), \left(0,0,\frac{1}{t}\right)\}\) Then \(P\) has period sequence \((1,1,1, t)\).
c. A polytope of period sequence \((1, 1, s, 1)\) in 3 dimensions
A polytope of period sequence \((1, 1, s, 1)\)
b. Combining \((1, 1, 1, t)\) with \((1, 1, s, 1)\) to get a polytope with period sequence \((1, 1, s, t)\)
d. A non convex polytope of period $(1, u, 1, 1)$ in 3 dimensions
e. Higher dimensions

- Defining Q recursively (recall that Q has period sequence $(1, 1, \ldots, 1, s, 1)$):

Constructing Q_d in d dimensions
Questions?
We use piece-wise affine unimodular transformations as a way to skew polytopes without changing the lattice so leaving the number of lattice points inside a polytope intact. This is a very useful way to geometrically manipulate a polytope without changing its Ehrhart polynomial or quasi-polynomial.