Turán Numbers of Vertex-disjoint Cliques in \(r \)-partite Graphs
Final Honors Project, University of Wyoming

Anna Schenfisch\(^4\)
UW Mentor: Bryan Shader\(^4\)
Research partners: Jessica De Silva\(^1\) Kristin Heysse\(^2\)
Adam Kapilow\(^3\) Michael Young\(^2\)

\(^1\)University of Nebraska-Lincoln
\(^2\)Iowa State University
\(^3\)Swarthmore College
\(^4\)University of Wyoming

April 29, 2017
History and Motivation

- Graph theory is the math of connections
- Applications in other fields, both abstract and applied
- Historically began with Euler: "The Seven Bridges of Königsberg" (1736)
- Erdős is considered the father of the field (early 20th century)
Graph: A graph \(G \) is a pair of sets \(G = (V, E) \), where \(V \) is a fixed set of vertices, and the edge set \(E \) is a set of pairs of distinct elements from \(V \). We often write \(V \) as \(V(G) \) and \(E \) as \(E(G) \).
Definitions

- Graph

- Subgraph: A **subgraph** H of G is a pair of sets $H = (V', E')$ where $V' \subseteq V$ and $E' \subseteq E$, which is itself a graph. If H is a subgraph of G, we write $H \subseteq G$.
Definitions

- Graph
- Subgraph
- Clique: A **clique** is a graph or subgraph in which every vertex is adjacent to every other vertex. A clique of size r is a **complete** graph on r vertices.
Definitions

- Graph
- Subgraph
- Clique

More than one cliques present that do not share vertices are called **vertex-disjoint cliques**.
Definitions

- Graph
- Subgraph
- Clique
- r-Partite: A graph G is called **r-partite** if there are r partitions of the vertex set $V(G) = V_1 \cup V_2 \cup \ldots \cup V_r$ such that if y and y' are both in the same V_i, then $xy \notin E(G)$. r-Partite graphs can also be **complete**.
Definitions

- Graph
- Subgraph
- Clique

r-Partite: A graph G is called **r-partite** if there are r partitions of the vertex set $V(G) = V_1 \cup V_2 \cup \ldots \cup V_r$ such that if y and y' are both in the same V_i, then $xy \notin E(G)$.

r-Partite graphs can also be **complete**.
Definitions

- **Graph**
- **Subgraph**
- **Clique**
- **r-Partite**: A graph G is called **r-partite** if there are r partitions of the vertex set $V(G) = V_1 \cup V_2 \cup ... \cup V_r$ such that if y and y' are both in the same V_i, then $xy \notin E(G)$.

 r-Partite graphs can also be **complete**.

How can we count edges?
A complete graph is often denoted with a K.

k copies of K is denoted kK.

A complete r-partite graph is denoted $K_{n_1,...,n_r}$, where there $n_1, ... n_r$ are the number of vertices in each part.

We denote k vertex-disjoint cliques of size r as kK_r.
Turán Numbers

$\text{ex}(G,H)$

What is the maximum number of edges which a subgraph of G may have and still contain no copy of H?
What is the maximum number of edges which a subgraph of G may have and still contain no copy of H?
Let $G = K_{2,3}$ and $H = 2K_2$
What is $\text{ex}(K_{2,3}, 2K_2)$?
What is $\text{ex}(K_{2,3}, 2K_2)$?
What is $ex(K_{2,3}, 2K_2)$?
What is $\text{ex}(K_{2,3}, 2K_2)$?
What is $\text{ex}(K_{2,3}, 2K_2)$?
What is $ex(K_{2,3}, 2K_2)$?
Therefore, \(ex(K_{2,3}, 2K_2) = 3 \)
Our Theorem

For any integers $1 \leq k \leq n_1 \leq \ldots \leq n_r$, we have

$$\text{ex}(K_{n_1, n_2, \ldots, n_r}, kK_r) = \sum_{1 \leq i < j \leq r} n_i n_j - n_1 n_2 + n_2(k - 1)$$
Proof Ideas

- First half of the proof is the lower bound
- Second half of the proof is the upper bound
 - Proof strategy - **induction**
 - Double induction on $n_1 + k$
 - Two lemmas as base cases where we are only looking for one clique, and where each part size is equal
The extremal number is \textit{at least} the number we claim (lower bound)

The extremal number is \textit{at most} the number we claim (upper bound)

Therefore, the extremal number is \textit{exactly} the number we claim

Characteristics of host and forbidden graph allow us to have equality
Special thanks to Carnegie Mellon University and the Summer Undergraduate Applied Mathematics Institute
Questions?