Inequalities for relative operator entropies

Pawel Kluza
University of Life Sciences-Lublin, pawel.kluza@up.lublin.pl

Marek Niezgoda
University of Life Sciences-Lublin, marek.niezgoda@up.lublin.pl

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.2845
INEQUALITIES FOR RELATIVE OPERATOR ENTROPIES

PAWEL A. KLUZA and MAREK NIEZGODA

Key words. Operator monotone function, f-connection, Operator mean, Relative operator entropy, Tsallis relative operator entropy, Positive linear map.

AMS subject classifications. 94A17, 47A64, 15A39.

1. Introduction. We start with some notation (see [2, p. 112]).

As usual, the symbol $M_n(\mathbb{C})$ denotes the C^*-algebra of $n \times n$ complex matrices. For matrices $X, Y \in M_n(\mathbb{C})$, we write $Y \leq X$ (resp., $Y < X$) if $X - Y$ is positive semidefinite (resp., positive definite).

A linear map $\Phi : M_n(\mathbb{C}) \to M_k(\mathbb{C})$ is said to be positive if $0 \leq \Phi(X)$ for $0 \leq X \in M_n(\mathbb{C})$. If $0 < \Phi(X)$ for $0 < X \in M_n(\mathbb{C})$ then Φ is said to be strictly positive.

A real function $f : J \to \mathbb{R}$ defined on interval $J \subset \mathbb{R}$ is called an operator monotone function, if for all Hermitian matrices A and B (of the same order) with spectra in J $A \leq B \implies f(A) \leq f(B)$.

Let $f : J \to \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. Let A be an $n \times n$ positive definite matrix and B be an $n \times n$ Hermitian matrix such that the spectrum $\text{Sp}(A^{-1/2}BA^{-1/2}) \subset J$. Then the operator σ_f given by

\begin{equation}
A\sigma_fB = A^{1/2}f(A^{-1/2}BA^{-1/2})A^{1/2}
\end{equation}
Note that for the functions $p + 1 - p$ and t^p, the definition of Eq. (1.1) leads to the arithmetic and geometric operator means (1.2) and (1.3), respectively.

For $A > 0$, $B > 0$ and $p \in [0, 1]$, the p-arithmetic mean is defined as follows

$$A \nabla_p B = (1 - p)A + pB.$$

(1.2)

For $A > 0$, $B > 0$ and $p \in [0, 1]$, the p-geometric mean is defined by (see [12, 17])

$$A \sharp_p B = A^{1/2}(A^{-1/2}BA^{-1/2})^pA^{1/2}.$$

(1.3)

We now give definitions of some operator entropies.

For $A > 0$, $B > 0$, the relative operator entropy is defined by (see [4])

$$S(A, B) = A^{1/2} \log(A^{-1/2}BA^{-1/2})A^{1/2}.$$

(1.4)

For $A > 0$, $B > 0$ and $p \in \mathbb{R}$, the generalized relative operator entropy is given by (see [14, 18])

$$S_p(A, B) = A^{1/2}(A^{-1/2}BA^{-1/2})^p \log(A^{-1/2}BA^{-1/2})A^{1/2}.$$

(1.5)

For $A > 0$, $B > 0$ and $0 < p \leq 1$, the Tsallis relative operator entropy is defined as follows (see [18])

$$T_p(A, B) = \frac{A \nabla_p B - A}{p}.$$

(1.6)

It is not hard to check that (1.4), (1.5) and (1.6) are of the form (1.1) for the functions $\log t$, $t^p \log t$ and $\ln t = e^{t-1}$, respectively.

In recent years there has been a growing interest in the study of entropies and means [5, 6, 7, 8, 9, 16, 19].

Theorem A. (Furuichi et al. [17, Theorem 3.6]) For $A > 0$, $B > 0$, $1 \geq p > 0$ and $a > 0$, the following inequality holds:

$$A \nabla_p B - \frac{1}{a}A \nabla_{p-1} B + \frac{1 - a^p}{pa^p} A \leq T_p(A, B) \leq \frac{1}{a}B - \frac{1 - a^p}{pa^p} A \nabla_p B - A.$$

(1.7)

The next known double inequalities are consequences of (1.7) (see [5, 7, 8, 19]):

$$A - AB^{-1}A \leq T_p(A, B) \leq B - A,$$
Inequalities for Relative Operator Entropies \[853 \]

\[A - AB^{-1}A \leq S(A, B) \leq B - A, \]

and

\[(1 - \log a)A - \frac{1}{a}AB^{-1}A \leq S(A, B) \leq (\log a - 1)A + \frac{1}{a}B \quad \text{for } a > 0. \]

Theorem B. (Zou [19, Theorem 2.2]) For \(A > 0, B > 0, 1 \geq p > 0 \) and \(a > 0 \), the following inequality holds:

\[
(1.8) \quad -\left(\log a + \frac{1 - a^p}{p a^p}\right)A + a^{-p}T_p(A, B) \leq S(A, B) \leq T_p(A, B) - \frac{1 - a^p}{p}A^p B - (\log a)A.
\]

It is easily seen that (1.8) implies a result in [7]:

\[T_p(A, B) \leq S(A, B) \leq T_p(A, B). \]

Theorem C. (Furuta [9, Theorem 2.1]) Let \(A \) and \(B \) be \(n \times n \) positive definite matrices such that \(M_1 I \geq A \geq m_1 I > 0 \) and \(M_2 I \geq B \geq m_2 I > 0 \). Put \(m = \frac{m_2}{M_1}, M = \frac{M_2}{m_1}, h = \frac{M}{m} = \frac{M_1 M_2}{m_1 m_2} > 1 \) and \(p \in (0, 1] \). Let \(\Phi \) be normalized positive linear map on \(B(H) = M_n(\mathbb{C}) \). Then the following inequalities hold:

\[\Phi(T_p(A, B)) \leq T_p(\Phi(A), \Phi(B)) \leq \Phi(T_p(A, B)) + \frac{1 - K(p)}{p} \Phi(A)^p \Phi(B) \]

and

\[\Phi(T_p(A, B)) \leq T_p(\Phi(A), \Phi(B)) \leq \Phi(T_p(A, B)) + F(p)\Phi(A), \]

where \(K(p) \) is the generalized Kantorovich constant defined by

\[K(p) = \frac{h^p - h}{(p - 1)(h - 1)} \left(\frac{(p - 1)(h^p - 1)}{p(h^p - h)}\right)^p \]

and

\[F(p) = \frac{m^p}{p} \left(\frac{h^p - h}{h - 1}\right) \left(1 - K(p)\right)^{\frac{1}{p}} \geq 0. \]

For a positive concave function \(g : J \to \mathbb{R}_+ \) defined on an interval \(J = [m, M] \) with \(m < M \), we define (see [13])

\[a_g = \frac{g(M) - g(m)}{M - m}, b_g = \frac{M g(m) - m g(M)}{M - m} \quad \text{and} \quad c_g = \min_{t \in J} a_t^{a_t + b_t} g(t). \]
In order to unify our further studies, we introduce the notion of relative g-entropy as follows. Let $g: J \rightarrow \mathbb{R}$ be a continuous function defined on an interval $J \subset \mathbb{R}$. For $A > 0$, $B > 0$ with the spectrum of $A^{-1/2}BA^{-1/2}$ in J, we define the relative g-entropy of A and B as

\begin{equation}
S_g(A, B) = A\sigma_g B = A^{1/2}g(A^{-1/2}BA^{-1/2})A^{1/2}.
\end{equation}

In the present paper, our aim is to provide some further operator inequalities for entropies and means transformed by a strictly positive linear map Φ.

\section{Furuta type inequalities.}

Throughout $f(t, p)$ is a real function of two variables $t \in J$ and $p \in P = (0, p_0]$, $0 < p_0 \leq 1$. We use the notation

\begin{align}
&f_p(t) = f(t, p) \quad \text{for } t \in J \text{ and } p \in P, \\
g_p(t) = g(t, p) = \frac{f(t, p) - f(t, 0)}{p} \quad \text{for } t \in J \text{ and } p \in P.
\end{align}

If there exist the following limits, then we write

\begin{align}
f_0(t) &= f(t, 0) = \lim_{p \to 0^+} f(t, p) \quad \text{for } t \in J, \\
g_0(t) &= g(t, 0) = \lim_{p \to 0^+} g(t, p) \quad \text{for } t \in J.
\end{align}

For example, by substituting $f(t, p) = t^p$ for $t > 0$, $0 < p \leq p_0 = 1$, we get $f_0(t) = 1$, $g(t, p) = \ln p(t)$ and $g_0(t) = \log t$.

\textbf{Lemma 2.1.} Let $f(t, p)$ be a real function of two variables $t \in J$ and $p \in P = (0, p_0]$, $0 < p_0 \leq 1$, with an interval $J \subset (0, \infty)$. Assume $f(t, 0) = 1$, $t \in J$. For $n \times n$ positive definite matrices A and B with spectrum $\operatorname{Sp}(A^{-1/2}BA^{-1/2}) \subset J$, the following identity holds:

\begin{equation}
S_g(A, B) = \frac{S_f(A, B) - A}{p} \quad \text{for } p \in P,
\end{equation}

where f_p and g_p are defined by \eqref{eq:fp}–\eqref{eq:gp}.

\textbf{Proof.} By \eqref{eq:entropy} and \eqref{eq:gf}, we establish the equalities

\begin{align}
\frac{S_f(A, B) - A}{p} &= A\sigma_f B - A \\
&= \frac{A^{1/2}f_p(A^{-1/2}BA^{-1/2})A^{1/2} - A^{1/2}IA^{1/2}}{p} \\
&= A^{1/2}\frac{f_p(A^{-1/2}BA^{-1/2}) - I}{A^{1/2}}.
\end{align}
Therefore, from (2.6), we derive that

\[\mu \]

matrices such that

\[0 < m < M \]

This proves (2.5).

Therefore, from (2.6), we derive

\[
\begin{align*}
S_{f_p}(A, B) - A &= A^{1/2} f_p(Z) - U^* U A^{1/2} \\
&= A^{1/2} U^* \text{diag} (f(\mu_1, p), f(\mu_2, p), \ldots, f(\mu_n, p)) U - U^* U A^{1/2} \\
&= A^{1/2} U^* \text{diag} \left(f(\mu_1, p), f(\mu_2, p), \ldots, f(\mu_n, p) \right) U A^{1/2} \\
&= A^{1/2} g_p(U^* \text{diag}(\mu_1, \mu_2, \ldots, \mu_n) U) A^{1/2} \\
&= A^{1/2} g_p(A^{-1/2} BA^{-1/2}) A^{1/2} = A \sigma_p B = S_{g_p}(A, B).
\end{align*}
\]

This proves (2.5). \(\square \)

In the forthcoming theorem, we extend Furuta’s inequality (1.9) from the functions \(t \to t^p \), \(p \in (0, 1] \), to positive operator monotone functions \(t \to f_p(t) \) on \(J = [m, M] \), \(0 < m < M \).

Theorem 2.2. Let \(f(t, p) \) be a real function of two variables \(t \in J = [m, M] \) with \(0 < m < M \), and \(p \in P = (0, p_0] \) with \(0 < p_0 \leq 1 \). Let \(f(t, 0) = 1, t \in J \). Assume that \(f_p > 0, p \in P \), is operator monotone on \(J \). Let \(A \) and \(B \) be \(n \times n \) positive definite matrices such that \(mA \leq B \leq MA \).

If \(\Phi : M_n(\mathbb{C}) \to M_k(\mathbb{C}) \) is a strictly positive linear map, then

\[
S_{g_p}(\Phi(A), \Phi(B)) \leq \Phi(S_{g_p}(A, B)) + \frac{1-c_{f_p}}{p} \Phi(A) \sigma_p \Phi(B),
\]

where \(f_p \) and \(g_p \), \(p \in P \), are defined by (2.7) and (2.3), respectively, and \(c_{f_p} = \min_{t \in J} \frac{a_{f_p} t^p + b_{f_p}}{f_p(t)} \) with \(a_{f_p} = \frac{f_p(M) - f_p(m)}{M - m} \) and \(b_{f_p} = \frac{M f_p(m) - m f_p(M)}{M - m} \).

If in addition \(\frac{1-c_{f_p}}{p} \to d \) as \(p \to 0 \), then

\[
S_{g_0}(\Phi(A), \Phi(B)) \leq \Phi(S_{g_0}(A, B)) + d \Phi(A),
\]
where f_0 and g_0 are defined by (2.3) and (2.4), respectively.

Proof. It is not hard to verify that the assertion of [13, Corollary 3.4] can be extended to the case $0 < mA \leq B \leq MA$. In consequence, since $f_p > 0$ is operator monotone on J, the following inequality is met (cf. [13, Corollary 3.4]):

$$c f_p \Phi(A) \sigma f_p \Phi(B) \leq \Phi(A \sigma f_p B).$$

(2.9)

In addition, $\Phi(A) \sigma f_p \Phi(B) = \Phi(A)$, because $f_0 \equiv 1$. So, it follows from (2.5) and (2.9) that

$$\Phi(A) \sigma g_p \Phi(B) - \frac{1 - c f_p}{p} \Phi(A) \sigma f_p \Phi(B) = \frac{c f_p \Phi(A) \sigma f_p \Phi(B) - \Phi(A)}{p} \leq \frac{\Phi(A \sigma f_p B) - \Phi(A)}{p} = \Phi \left(\frac{A \sigma f_p B - A}{p} \right) = \Phi(A \sigma g_p B).$$

Therefore, we have

$$\Phi(A) \sigma g_p \Phi(B) \leq \Phi(A \sigma g_p B) + \frac{1 - c f_p}{p} \Phi(A) \sigma f_p \Phi(B).$$

(2.10)

Now, the inequality (2.7) can be deduced from (2.10) via (1.12).

By passing to the limit in (2.7) as $p \to 0$, we get $\Phi(A) \sigma f_p \Phi(B) \to \Phi(A) \sigma f_0 \Phi(B)$, $A \sigma g_p B \to A \sigma g_0 B$ and $\Phi(A) \sigma f_p \Phi(B) \to \Phi(A) \sigma f_0 \Phi(B) = \Phi(A)$. Thus, (2.8) leads to (2.7).

This completes the proof of Theorem 2.2.

For $A > 0$, $B > 0$ and $p, q \geq 0$, $p + q \leq 1$, the (p, q)-generalized relative operator entropy is defined by

$$S_{p,q}(A, B) = A^{1/2}(A^{-1/2}BA^{-1/2})^p(\log(A^{-1/2}BA^{-1/2}))^q A^{1/2}.\tag{2.11}$$

Notice that for $q = 0$ one has $S_{p,q}(A, B) = A_{p^2}B$, and for $q = 1$ and $p = 0$, $S_{p,q}(A, B) = S(A, B)$.

It is worth emphasizing that the function $J \ni t \to t^q(\log t)^p, p, q \geq 0, p + q \leq 1$, is operator monotone on any interval $J = [m, M], 1 < m < M$ (see [11 Corollary 2.7]).

Below we give an interpretation of statement (2.7) for the (p, q)-generalized relative operator entropy.

Corollary 2.3. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA, 1 < m < M$.
If $\Phi : M_n(\mathbb{C}) \to M_k(\mathbb{C})$ is a strictly positive linear map, then

\begin{equation}
S_{p,q}(\Phi(A), \Phi(B)) \leq \Phi(S_{p,q}(A,B)) + \frac{1-c_{f_{p,q}}}{p} \Phi(A) \sigma_{f_{p,q}} \Phi(B),
\end{equation}

where $p,q \geq 0$, $p+q \leq 1$, and $S_{p,q}$ is the (p,q)-generalized relative operator entropy defined by (2.11), and $c_{f_{p,q}}$ is defined by (2.12).

Proof. Apply Theorem 2.2 to the functions $f_{p,q}(t) = pt^p/\log t^q + 1$, $f_{0,q}(t) = 1$, and $g_{p,q}(t) = t^p/\log t^q$, $t \in [m,M]$ with fixed q and $p \in [0,p_0]$, $p_0 = 1 - q$. \hfill \Box

3. Extending Furuichi et al. and Zou’s results

In this section, we develop some results due to Furuichi et al. \[7\] and Zou \[19\]. To do so, we involve star-shaped functions.

Remind that a real nonnegative function F on $[0,p_0]$, $0 < p_0 \leq \infty$, with $F(0) = 0$ is said to be star-shaped if $F(\alpha p) \leq \alpha F(p)$ for $p \in [0,p_0]$ and $0 \leq \alpha \leq 1$.

Theorem 3.1. With the definitions (2.7)–(2.8) for a real function $f(t,p)$ of two variables $t \in J \subset (0,\infty)$ with an interval J and $p \in P = [0,1]$, assume that for each $t \in J$ the function $p \to f(t,p) - f(t,0)$, $p \in P$, is positive and star-shaped. Let $\varphi : J \to J$, i.e., $\varphi(t) \in J$ for $t \in J$. Let A and B be $n \times n$ positive definite matrices such that the spectrum $\text{Sp}(A^{-1/2}BA^{-1/2}) \subset J$. Then for any $p \in (0,1]$, the following two inequalities hold:

\begin{align*}
(3.1) & \quad S_{g_p}(A,B) \leq S_{g_1}(A,\varphi(A,B)) - S_{h_p}(A,B), \\
(3.2) & \quad S_{g_0}(A,B) \leq S_{g_1}(A,\varphi(A,B)) - S_{h_0}(A,B),
\end{align*}

where

\begin{align*}
(3.3) & \quad h_p(t) = h(t,p) = g(\varphi(t),p) - g(t,p) \quad \text{for } t \in J, \\
(3.4) & \quad h_0(t) = h(t,0) = g(\varphi(t),0) - g(t,0) \quad \text{for } t \in J.
\end{align*}

Proof. The function $[0,1] \ni p \to \frac{f(t,p) - f(t,0)}{p} = g(t,p)$ is nondecreasing \[3\] Lemma 3], i.e.,

$$
0 < p_1 \leq p_2 \leq 1 \quad \text{implies} \quad \frac{f(t,p_1) - f(t,0)}{p_1} \leq \frac{f(t,p_2) - f(t,0)}{p_2}.
$$

Hence,

$$
g(t,0) = \lim_{p_1 \to 0^+} \frac{f(t,p_1) - f(t,0)}{p_1} \leq \frac{f(t,p_2) - f(t,0)}{p_2} \quad \text{for any} \quad 0 < p_2 \leq 1.
$$
Consequently, the following double inequality is valid:

\[(3.5) \quad g(t, 0) \leq g(t, p) \leq g(t, 1) \text{ for any } 0 < p \leq 1.\]

To prove (3.1), we employ the inequality \(g(t, p) \leq g(t, 1)\) for \(t \in J, 0 < p \leq 1\) (see (3.5)). Since \(\varphi(t) \in J\) for \(t \in J\), we obtain

\[g(\varphi(t), p) \leq g(\varphi(t), 1) \text{ for } t \in J,
\]
or, equivalently,

\[g(t, p) \leq g(\varphi(t), 1) - [g(\varphi(t), p) - g(t, p)] \text{ for } t \in J.
\]

So, by (3.3), we find that

\[g(t, p) \leq g(\varphi(t), 1) - h(t, p) \text{ for } t \in J.
\]

In other words, we have

\[(3.6) \quad g_p(t) \leq g_1(\varphi(t)) - h_p(t) \text{ for } t \in J.
\]

By denoting \(Z = A^{-1/2}BA^{-1/2}\) and making use of (3.6), we get

\[g_p(Z) \leq g_1(\varphi(Z)) - h_p(Z).
\]

Hence,

\[A^{1/2}g_p(Z)A^{1/2} \leq A^{1/2}g_1(\varphi(Z))A^{1/2} - A^{1/2}h_p(Z)A^{1/2},
\]

which means

\[(3.7) \quad A\sigma_g B \leq A\sigma_{g_1 \circ \varphi} B - A\sigma h_p B.
\]

However, we can show that

\[(3.8) \quad A\sigma_{g_1 \circ \varphi} B = A\sigma_{g_1} (A\sigma_\varphi B).
\]

Indeed, by using (1.4), we derive

\[A\sigma_{g_1 \circ \varphi} B = A^{1/2}(g_1 \circ \varphi)(A^{-1/2}BA^{-1/2})A^{1/2} = A^{1/2}g_1(\varphi(A^{-1/2}BA^{-1/2}))A^{1/2} = A^{1/2}g_1(A^{-1/2}A^{1/2}\varphi(\varphi(A^{-1/2}BA^{-1/2}))A^{1/2} = A^{1/2}g_1(A^{-1/2}(A\sigma_\varphi B)A^{-1/2})A^{1/2} = A\sigma_{g_1} (A\sigma_\varphi B),
\]

completing the proof of (3.8).
Inequalities for Relative Operator Entropies

So, by virtue of (3.7)–(3.8), we infer that
\[S_{g_p}(A, B) \leq S_{g_1}(A, A\sigma_\varphi B) - S_{h_0}(A, B), \]
which proves (3.1).

We shall show (3.2). According to the inequality \(g(t, 0) \leq g(t, p) \) for \(t \in J, 0 < p \leq 1 \) (see (3.5)), we get
\[g(\varphi(t), 0) \leq g(\varphi(t), p) \quad \text{for} \quad t \in J, \]
because \(\varphi(t) \in J \) for \(t \in J \). So, by (3.4), we have
\[g(t, 0) \leq g(t, p) - [g(t, p) - g(\varphi(t), p)] - h_0(t) \quad \text{for} \quad t \in J, \]
which means
\[g_0(t) \leq g_p(t) - [g_p(t) - g_p(\varphi(t))] - h_0(t) \quad \text{for} \quad t \in J. \]

With the notation \(Z = A^{-1/2}BA^{-1/2} \), inequality (3.9) gives
\[g_0(Z) \leq g_p(Z) - [g_p(Z) - g_p(\varphi(Z))] - h_0(Z). \]
Next, by pre- and post-multiplying by \(A^{1/2} \) we obtain
\[A^{1/2}g_0(Z)A^{1/2} \leq A^{1/2}g_p(Z)A^{1/2} - [A^{1/2}g_p(Z)A^{1/2} - A^{1/2}g_p(\varphi(Z))A^{1/2}] - A^{1/2}h_0(Z)A^{1/2}. \]
This amounts to
\[A\sigma_{g_p}B \leq A\sigma_{g_p}B - [A\sigma_{g_p}B - A\sigma_{g_p}\circ\varphi B] - A\sigma_{h_0}B. \]

Similarly as in (3.8), we have
\[A\sigma_{g_p}\circ\varphi B = A\sigma_{g_p}(A\sigma_\varphi B). \]

Therefore, (3.10)–(3.11) lead to
\[S_{g_p}(A, B) \leq S_{g_p}(A, B) - [S_{g_p}(A, B) - S_{g_p}(A, A\sigma_\varphi B)] - S_{h_0}(A, B), \]
completing the proof of (3.2). \(\square \)

Remark 3.2. According to [3, Theorem 5], Theorem 3.1 remains valid if the star-shapedness of the function \(p \to f(t, p) - f(t, 0) \), is replaced by convexity or convexity on the average.

Remark 3.3. (i). It is not hard to verify that Theorem 3.1 Eq. (3.1), reduces to Theorem A, with the following specification
\[f_p(t) = t^p, \quad g_p(t) = \ln_p t = \frac{t^p - 1}{p}, \quad g_1(t) = t - 1, \quad \varphi(t) = \frac{t}{a}, \quad a > 0. \]
(ii). Likewise, Theorem 3.1, Eq. (3.2), becomes Theorem B, whenever
\[f_p(t) = t^p, \quad g_0(t) = \log t, \quad g_p(t) = \frac{t^p - 1}{p}, \quad \varphi(t) = at, \quad a > 0. \]

In the next corollary, we provide analogs of Theorem A and Theorem B for the
generalized relative operator entropy defined by (1.5).

Corollary 3.4. Let \(A \) and \(B \) be \(n \times n \) positive definite matrices such that the
spectrum \(\text{Sp} (A^{-1/2}BA^{-1/2}) \subset (1, \infty) \). Then for any \(p \in P = (0, 1] \) and \(a \geq 1 \), the
following two inequalities hold:
\[
\begin{align*}
(3.12) & \quad S_p(A, B) \leq a^{1-p}(\log a)B + a^{1-p}S_1(A, B) - (\log a)A_{ap}B, \\
(3.13) & \quad a^{-p}S(A, B) + (a^{-p}\log a)A - (\log a)A_{ap}B \leq S_p(A, B),
\end{align*}
\]
where \(S_p \) is the generalized relative operator entropy defined by (1.5), and \(S \) is the
relative operator entropy defined by (1.4).

Proof. We apply Theorem 3.1 to the functions \(f(t, p) = pt^p \log t, \ f(t, 0) = 0, \ g_p(t) = g(t, p) = t^p \log t, \ g_0(t) = g(t, 0) = \log t, \) and \(\varphi(t) = at, \ a \geq 1, \) for \(t \in J = (1, \infty) \) and \(p \in (0, 1] \). So, it is easily seen that \(S_q(A, B) = aB. \)

Next, we shall show the identity
\[
(3.14) \quad S_q(A, aB) = (a^q \log a)A_{aq}B + a^q S_q(A, B) \quad \text{for} \quad q \in (0, 1].
\]

Indeed, we have
\[
S_q(A, aB) = A^{1/2}g_q(A^{-1/2}aB)A^{-1/2}A^{1/2} = A^{1/2}g_q(aA^{-1/2}BA^{-1/2})A^{1/2}.
\]
By denoting \(Z = A^{-1/2}BA^{-1/2} \), we write \(Z = U^*(\text{diag} \mu_i)U \) with unitary \(U \) and the
eigenvalues \(\mu_i, \ i = 1, \ldots, n, \) of \(Z. \) Hence,
\[
g_q(aZ) = g_q(U^*(\text{diag} \mu_i)U) = U^*(\text{diag} g_q(\mu_i))U \\
= U^*(\text{diag} ((a\mu_i)^q \log(a\mu_i)))U \\
= U^*(\text{diag} (a^q\mu_1^q \log a + a^q\mu_1^q \log \mu_1))U \\
= U^*(\text{diag} ((a^q \log a)\mu_1^q))U + U^*(\text{diag} (a^q \mu_1^q \log \mu_1))U \\
= (a^q \log a)U^*(\text{diag} \mu_1^q)U + a^qU^*(\text{diag} (\mu_1^q \log \mu_1))U \\
= (a^q \log a)Z^q + a^q g_q(Z).
\]
By pre- and post-multiplying by \(A^{1/2} \) we obtain
\[
S_q(A, aB) = S_{g_q}(A, aB) = A^{1/2}g_q(aZ)A^{1/2} \\
= (a^q \log a)A^{1/2}Z^q A^{1/2} + a^q A^{1/2}g_q(Z)A^{1/2} \\
= (a^q \log a)A_{aq}B + a^q S_q(A, B),
\]
completing the proof of (3.14).

(i) In order to prove (3.12), we derive
\[
 h_p(t) = h(t, p) = g(\varphi(t), p) - g(t, p) \\
 = (at)^p \log(at) - t^p \log t \\
 = (a^p \log a)t^p + (a^p - 1)t^p \log t \\
 \text{for } t \in J.
\]

For this reason,
\[
 S_{h_p}(A, B) = (a^p \log a)A\sharp_p B + (a^p - 1)S_p(A, B).
\]

By employing (3.14) with \(q = 1\), we establish
\[
 S_1(A, aB) = (a \log a)B + aS_1(A, B).
\]

(ii) We shall show (3.13). By virtue of (3.2) we get
\[
 S(A, B) \leq S_p(A, aB) - S_{h_0}(A, B).
\]

Putting \(q = p\) into (3.14) yields
\[
 S_p(A, aB) = (a^p \log a)A\sharp_p B + a^p S_p(A, B).
\]

It is obvious that
\[
 h_0(t) = h(t, 0) = g(at, 0) - g(t, 0) = \log(at) - \log t = \log a \\
 \text{for } t \in J.
\]

Hence, \(S_{h_0}(A, B) = (\log a)A\).

It now follows from (3.16) that
\[
 S(A, B) \leq a^p S_p(A, B) + (a^p \log a)A\sharp_p B - (\log a)A.
\]

Thus we obtain (3.13), as desired. \(\square\)

We are now in a position to show a complement to Furuta type inequality (2.7).

Theorem 3.5. With the definitions (2.1)–(2.4) for a real function \(f(t, p)\) of two variables \(t \in J = (0, \infty)\) and \(p \in P = (0, 1]\), assume that for each \(t \in J\) the function
\[
p \rightarrow f(t, p) - f(t, 0), \ p \in P, \ \text{is positive and star-shaped. Let } \varphi : J \to J \ \text{be such that } \varphi(t) = at \in J, \ a > 0, \ \text{for } t \in J. \ \text{Suppose that } g_1(t) = at + \beta, \ \alpha > 0, \ \text{is an affine function, and that } g_2 \ \text{is an concave function with its chord function } t \to a_{g_2} t + b_{g_2}, \ t \in J, \ a_{g_2} > 0 \ \text{(see (3.11)). Let } A \text{ and } B \ \text{be } n \times n \ \text{positive definite matrices.}
\]

If \(\Phi : M_n(\mathbb{C}) \to M_n(\mathbb{C}) \) is a strictly positive linear map, then for any \(p \in P \),

\[
(3.17) \quad S_{g_p}(\Phi(A), \Phi(B)) \leq \frac{\alpha a}{a_{g_2}} \Phi(S_{g_2}(A, B)) - S_{h_p}(\Phi(A), \Phi(B)) + \left(\beta - \frac{b_{g_2}}{a_{g_2}} \right) \Phi(A),
\]

where \(h_p(t) = h(t, p) = g(at, p) - g(t, p) \) for \(t \in J \).

Proof. As in the proof of Theorem 3.1 (see (3.5)), we have \(g_p(t) \leq g_1(t) \) for \(t \in J \), and

\[
g_p(t) \leq g_1(at) - h_p(t) = \alpha at + \beta - h_p(t) \quad \text{for } t \in J.
\]

Since \(g_2 \) is concave with its chord function \(t \to a_{g_2} t + b_{g_2}, \ t \in J, \ a_{g_2} > 0 \) (see (3.11)), we get

\[
a_{g_2} t + b_{g_2} \leq g_2(t) \quad \text{for } t \in J.
\]

By using the last two inequalities, we obtain

\[
g_p(t) + h_p(t) - \beta \leq \alpha \varphi(t) = \alpha at = \frac{\alpha a}{a_{g_2}} a_{g_2} t \leq \frac{\alpha a}{a_{g_2}}(g_2(t) - b_{g_2}) \quad \text{for } t \in J.
\]

In consequence, for \(Z = A^{-1/2}BA^{-1/2} \) and \(W = C^{-1/2}DC^{-1/2} \) with \(C = \Phi(A) \) and \(D = \Phi(B) \), we find that

\[
(3.18) \quad g_p(W) + h_p(W) - \beta I \leq \alpha a W;
\]

\[
\alpha a Z \leq \frac{\alpha a}{a_{g_2}} (g_2(Z) - b_{g_2} I).
\]

Thus, we obtain

\[
C^{1/2} g_p(W) C^{1/2} + C^{1/2} h_p(W) C^{1/2} - \beta C \leq \alpha a C^{1/2} W C^{1/2},
\]

\[
\alpha a A^{1/2} Z A^{1/2} \leq \frac{\alpha a}{a_{g_2}} \left(A^{1/2} g_2(Z) A^{1/2} - b_{g_2} A \right).
\]

That is,

\[
(3.19) \quad C \sigma_{g_p} D + C \sigma_{h_p} D - \beta C \leq \alpha a D,
\]

\[
\alpha a B \leq \frac{\alpha a}{a_{g_2}} (A \sigma_{g_2} B - b_{g_2} A).
\]

Hence,

\[
(3.20) \quad \alpha a \Phi(B) \leq \frac{\alpha a}{a_{g_2}} (\Phi(A \sigma_{g_2} B) - b_{g_2} \Phi(A)).
\]
But (3.19) can be rewritten as

\[(3.21) \quad \Phi(A)\sigma_{g_2}\Phi(B) + \Phi(A)\sigma_{h_2}\Phi(B) - \beta\Phi(A) \leq \alpha a \Phi(B).\]

Now, by combining (3.21) and (3.20), we establish

\[(3.22) \quad \Phi(A)\sigma_{g_2}\Phi(B) + \Phi(A)\sigma_{h_2}\Phi(B) - \beta\Phi(A) \leq \frac{\alpha a}{a_{g_2}}(\Phi(A)\sigma_{g_2}B - b_{g_2}\Phi(A)).\]

So, we infer that

\[(3.23) \quad \Phi(A)\sigma_{g_2}\Phi(B) \leq \frac{\alpha a}{a_{g_2}}(\Phi(A)\sigma_{g_2}B - \Phi(A)\sigma_{h_2}\Phi(B) + \left(\beta - \frac{b_{g_2}}{a_{g_2}}\right)\Phi(A)),\]

which is equivalent to (3.17).

Corollary 3.6. With the assumptions of Theorem 3.5, if in addition \(g_2 = g_1\) then (3.17) reduces to

\[(3.22) \quad S_{g_2}(\Phi(A), \Phi(B)) \leq a\Phi(S_{g_1}(A, B)) - S_{h_2}(\Phi(A), \Phi(B)) + \beta (1 - a) \Phi(A).\]

If additionally \(\Phi\) is the identity, then (3.22) yields

\[(3.23) \quad S_{g_2}(A, B) \leq aS_{g_1}(A, B) - S_{h_2}(A, B) + \beta (1 - a) A.\]

Remark 3.7. By letting \(\alpha = 1, \beta = -1\) and

\[f_p(t) = t^p, \quad g_p(t) = \ln t = \frac{t^p - 1}{p}, \quad \varphi(t) = \frac{t}{a}, \quad h_p(t) = t^p \ln \frac{1}{a}, 1 \geq a > 0,\]

inequality (3.23) becomes the result (1.7) due to Furuichi et al. (see Theorem A).

Acknowledgment. The authors wish to thank anonymous referees for helpful suggestions improving the readability of the paper.

REFERENCES

Reference List

