2014

A note on the spectral radius of a product of companion matrices

Eric Key
University of Wisconsin-Milwaukee, ericskey@uwm.edu

Hans Volkmer
University of Wisconsin - Milwaukee, volkmer@uwm.edu

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.2862

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
A NOTE ON THE SPECTRAL RADIUS OF A PRODUCT OF COMPANION MATRICES

E.S. KEY† AND H. VOLKMER†

Abstract. Conditions are given on the coefficients of the characteristic polynomials of a set of k companion matrices to ensure that the spectral radius of their product is bounded by t^k where $0 < t < 1$.

Key words. Companion matrices, Matrix products, Spectral radius.

AMS subject classifications. 15A42, 15B99.

1. Introduction. In a recent paper [2] on population dynamics, A. Blumenthal and B. Fernandez used a bound on the spectral radius of a finite product of companion matrices [2, Lemma 5.5]. In light of the authors’ work [4] on products of companion matrices, B. Fernandez inquired of the authors if they could supply a proof of their Lemma 5.5, which we have done in Theorem 1 in Section 3 below. In Section 2, we point out that a special case of our result is connected to the well-known Eneström-Kakaya theorem [1, Theorem 1.2] on the location of zeros of a polynomial.

2. The Eneström-Kakaya theorem. Consider the n by n companion matrix

$$C = \begin{bmatrix} -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}. \quad (2.1)$$

Its characteristic polynomial is

$$p(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \cdots + a_n.$$

By the Eneström-Kakaya theorem [1, Theorem 1.2], the assumption

$$1 \geq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0. \quad (2.2)$$

†Received by the editors on June 16, 2014. Accepted for publication on December 9, 2014. Handling Editor: Bryan L. Shader.

†Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201-0413, USA (ericskey@uwm.edu, volkmer@uw.edu).
implies that all zeros \(\lambda \) of \(p(\lambda) \) satisfy \(|\lambda| \leq 1 \). Therefore, under assumption (2.2), the spectral radius \(\rho(C) \) of \(C \) is at most 1.

We can prove this result using matrix notation as follows. Let \(A \) be the \(n + 1 \) by \(n + 1 \) matrix

\[
A = \begin{bmatrix}
C & 0 \\
u & 1
\end{bmatrix},
\]

(2.3)

where \(u = (0, 0, \ldots, 0, 1) \) is a row vector of dimension \(n \). Let \(B \) be the \(n + 1 \) by \(n + 1 \) companion matrix

\[
B = \begin{bmatrix}
1 - a_1 & a_1 - a_2 & a_2 - a_3 & \cdots & a_{n-1} - a_n & a_n \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix},
\]

(2.4)

and let \(L \) be the \(n + 1 \) by \(n + 1 \) matrix with 1's on the main diagonal, \(-1\)'s on the super diagonal and 0 entries everywhere else. By calculation, we verify that

\[
AL = LB
\]

so

\[
L^{-1}AL = B.
\]

Therefore, \(A, B \) are similar and so \(\rho(A) = \rho(B) \). We obtain

\[
\rho(C) \leq \rho(A) = \rho(B) = 1,
\]

where \(B \) is a stochastic matrix [3 page 526], that is, a nonnegative matrix whose row sums are all 1.

3. An extension. We use the same idea to prove the following lemma.

Lemma 3.1. Let \(C_i, i = 1, \ldots, k, \) be companion matrices of the form (2.1) with first rows \(-(a_{i1}, a_{i2}, \ldots, a_{in}) \), respectively. Suppose that

\[
1 \geq a_{i1} \geq a_{i2} \geq \cdots \geq a_{in} \geq 0 \quad \text{for} \quad i = 1, 2, \ldots, k.
\]

(3.1)

Then

\[
\rho(C_1C_2 \cdots C_k) \leq 1.
\]
Proof. We form the matrices A_i, B_i as before and note that

$$\rho(C_1C_2\cdots C_k) \leq \rho(A_1A_2\cdots A_k) = \rho(B_1B_2\cdots B_k) = 1$$

since $B_1B_2\cdots B_k$ is a row stochastic matrix. □

We now obtain our main result.

Theorem 3.2. Let $C_i, i = 1, \ldots, k$, be companion matrices of the form (2.1) with first rows $-(a_{i1}, a_{i2}, \ldots, a_{in})$, respectively. Suppose that

$$a_{i0} := 1 > a_{i1} > a_{i2} > \cdots > a_{in} \geq 0 \text{ for } i = 1, 2, \ldots, k. \quad (3.2)$$

Define

$$t = \max_{i=1}^{k} \max_{j=1}^{n} \frac{a_{i,j}}{a_{i,j-1}} < 1.$$

Then

$$\rho(C_1C_2\cdots C_k) \leq t^k < 1.$$

Proof. We define $\tilde{a}_{i,j} = t^{-j}a_{i,j}$ and corresponding companion matrices \tilde{C}_i. Let $W = \text{diag}(1, t^{-1}, \ldots, t^{-n+1})$. Then

$$C_i = tW\tilde{C}_iW^{-1}.$$

Therefore,

$$\rho(C_1C_2\cdots C_k) = t^k\rho(\tilde{C}_1\tilde{C}_2\cdots \tilde{C}_k) \leq t^k,$$

where we applied Lemma 3.1 to the matrices \tilde{C}_i. □

Acknowledgment. We wish to thank the referee for his kind remarks.

REFERENCES

