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ON HIGMAN’S CONJECTURE∗

A. VERA-LÓPEZ† , J.M. ARREGI† , M.A. GARĆıA-SÁNCHEZ† , AND L. ORMAETXEA†

Abstract. Let Gn be the subgroup of GLn(q) consisting of the n × n upper unitriangular matrices over the field Fq

with q elements. Higman [G. Higman. Enumerating p-groups. I. Inequalities. Proc. London Math. Soc. (3), 10:24–30, 1960.]

conjectured that the number of conjugacy classes of Gn, denoted by r(Gn), is a polynomial in q with integer coefficients. This has

been verified for n ≤ 13 by A. Vera-López and J.M. Arregi [A. Vera-López and J.M. Arregi. Conjugacy classes in unitriangular

matrices. Linear Algebra Appl., 370:85–124, 2003.]. The main purpose of this paper is to prove that for every n, r(Gn) can be

expressed in terms of r(Gi), with i < n, and r(Tn), where Tn is the subset of primitive canonical matrices of Gn. Moreover, the

expression of r(Tn) modulo (q − 1)

[
n+1
2

]
+3

is determinated and, consequently, it is deduced that r(Tn)mod(q − 1)

[
n+1
2

]
+3

is

a polynomial in q with integer coefficients.

Key words. Unitriangular matrices, Higman’s conjecture.

AMS subject classifications. 20D15.

1. Introduction. Let q be a power of a prime p. Let Gn be the subgroup of GLn(q) consisting of the

n× n upper unitriangular matrices over the field Fq with q elements. A longstanding conjecture, attributed

to Higman [5], states that the number of conjugacy classes of Gn, denoted by r(Gn), is a polynomial in q with

integer coefficients. This has been verified by Vera-López and Arregi [10] for n ≤ 13. This conjecture has

generated a great deal of interest. See, for example, Robinson [6], Alperin [1], Goodwin and Röhrle [3, 4],

and Evseev [2].

One way to study the conjugacy classes of Gn is to determine canonical representatives that share

the main characteristics of their conjugacy classes. Vera-López and Arregi [8] provided such canonical

representatives. We call these canonical matrices, and denote the set of n × n canonical matrices by Cn.

Obviously, the number r(Gn) of conjugacy classes of Gn is the cardinality of Cn.

To describe the structure of canonical matrices, we need a few definitions. The lexicographical order of

the indices (i, j) is defined by

(i, j) ≺ (k, l)⇐⇒ (i > k) or (i = k and j < l).

Let xij , with 1 ≤ i < j ≤ n be distinct indeterminates and let X be the strictly upper triangular matrix

whose (i, j)-entry is xij for all i, j with 1 ≤ i < j ≤ n. Given A ∈ Gn, we set Lij(A) to be the linear form

given by the (i, j)-entry of AX −XA, that is,

Lij(A) =
∑
i<k<j

(aikxkj − akjxik).

Position (i, j) of A is an inert point of A (respectively ramification point of A), if Li,j(A) is linearly indepen-

dent (respectively linearly dependent) from the sets of forms Lu,v(A), where (u, v) ≺ (i, j). Vera-López and
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jm.arregi@ehu.eus, mariasun.garcia@ehu.eus, leyre.ormaetxea@ehu.eus). Supported by the Government of the Basque Country

grant GIC10/167 and by the MEC grant MTM2011-25073.
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Arregi [8] showed that a necessary and sufficient condition for a matrix A to be canonical is that aij = 0

for every inert point (i, j). Obviously, if A ∈ Gn is a canonical matrix and aij , with i < j, is non-zero, then

(i, j) is a ramification point. We remember that the pivot points of a canonical matrix A ∈ Gn are the entries

corresponding to the first non-zero off-diagonal entry in each row.

Let A ∈ Gn be. Then the graph of A, denoted by ΓA = (VA, EA), is the undirected graph defined as

follows:

1. The vertex set VA is {1, 2, . . . , n}.
2. The edge set EA is {(i, j) | i < j and aij 6= 0}.

For A ∈ Gn with graph ΓA = (VA, EA) and v ∈ VA, the degree of the vertix v, denoted by d(v), is the

number of edges at v and ∆(ΓA) = max{d(v) | v ∈ VA}.

Let A ∈ Gn be. Then,

1. A is connected, if its graph ΓA is connected.

2. A is primitive, if its graph ΓA has no isolated vertices, that is, d(v) ≥ 1, for all v ∈ VA.

3. A is a forest matrix, if its graph ΓA contains no cycles.

A maximal connected subgraph of a graph (i.e. one where the addition of any more vertices would make

it disconnected) is called connected component. If we denote by dA the number of connected components of

ΓA, then A ∈ Gn is connected if and, only if, dA = 1. A matrix A ∈ Gn is said to be a tree matrix, if it is a

forest matrix with one connected component.

If A ∈ Cn is a canonical matrix and i ∈ {1, . . . , n}, the set of elements in the i-th row or i-th column

and not on the diagonal is called the i-th broken line and it is denoted by Xi. We note that there exists

i ∈ {1, . . . , n} such that Xi = {0} if and only if A is not a primitive matrix. That is, if A ∈ Gn is a primitive

canonical matrix, then Xi 6= {0} for all i.

The primitive canonical matrices will enable us to establish in Section 2 the following relationship

between r(Gn) and r(Gi), with i < n:

Theorem 1.1. Let T n be the subset of the primitive canonical matrices of Gn. Then,

r(Gn) = r(T n) +

n−1∑
k=1

(−1)k−1
(
n

k

)
r(Gn−k) + (−1)n−1.

Vera-López et al. [11] found an expression of r(Gn) in terms of the number of conjugacy classes of Gn
whose canonical matrices have spanning connected graphs. Theorem 1.1 connects r(Gn) with r(Gi), with

i < n and r(T n).

Since we know r(Gn) for n ≤ 13 (see Vera-López and Arregi, [10]), Theorem 1.1 suggests to us that it

is interesting to study r(T n). Indeed, Theorem 1.1 implies that to prove Higman’s conjecture is equivalent

to show that r(T n) is a polynomial in q with integer coefficients. Towards this end, in Section 3, we study

r(T n) and prove if it is an integer multiple of (q − 1)[
n+1
2 ].
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Finally, in Section 4, we show that for every n, there exist integer numbers ai,n (non-dependent of q)

with i = 0, 1, 2 such that

r(Tn) =

(
2∑
i=0

ai,n(q − 1)[
n+1
2 ]+i

)
mod (q − 1)[

n+1
2 ]+3.

That is, we find r(Tn) modulo (q − 1)[
n+1
2 ]+3. For this, we consider the subset PCn of Cn formed by the

primitive connected canonical matrices of Gn and we classify the canonical matrices of PCn according to the

zero-nonzero pattern of their entries. Thus, given A,B ∈ PCn, we say that A is graph-equivalent with B

(and we write A ≈ B), if for all i, j ∈ {1, . . . , n}, aij 6= 0 if and only if bij 6= 0. Clearly to be graph-equivalent

is an equivalence relation on PCn and if we consider an equivalence class [A] ∈ PCn/ ≈, then ΓB = ΓA, for

all B ∈ [A]. So, we denote this graph by Γ[A]. Furthermore, in Section 4, we also prove that the search of

ai,n, with i = 0, 1, 2 is closely related to the number of equivalence classes of PCj/ ≈ such that their graphs

are trees and j ≤ 7. Because of this, we have found the quotient set PCj/ ≈ for j ≤ 7. In order to obtain

PCj/ ≈ for j ≤ 7, we have considered all possible zero-nonzero patterns that give a primitive connected

matrix and between these, we have selected the canonical matrices, by checking that all positions (i, j) with

non-zero entry are ramification points. For [A] ∈ PCj/ ≈, we note:

1. If j ≤ 5, the graph Γ[A] is a tree.

2. If j ≤ 4, then j − 2 vertices of Γ[A] have degree 2 and the rest vertices have degree 1.

3. If j = 5, 6, then ∆(Γ[A]) ≤ 3.

4. If j = 6, then there exists exactly one [A] ∈ PC6/ ≈ such that its graph contains a cycle.

Moreover, direct calculation shows that the number of [A] ∈ PCj/ ≈ such that Γ[A] is a tree, for j ≤ 7 are:

j #{[A] ∈ PCj/ ≈| Γ[A] is a tree}
2 1

3 1

4 2

5 5

6 18

7 77

We will use them to calculate ai,n, for i = 0, 1, 2.

2. The relationship between r(Gn) and r(Gi), with i < n. As noted in Section 1, we are interested

in finding a relation between r(Gn) and r(Gi), with i < n. First, we need to relate the canonical matrices of

Cn with canonical matrices of Cn−1. We begin by describing how to construct matrices of Cn from canonical

matrices of Cn−1.

Let A be a matrix of Gn. Suppose that Xi = {0}. Then, A is given by

A =

 A
[1..i−1]
[1..i−1] 0 A

[i+1..n]
[1..i−1]

1 0

A
[i+1..n]
[i+1..n]


where A

[l1..l2]
[k1..k2]

is the submatrix of A whose rows are the rows k1, k1 + 1, . . . , k2 of A and whose columns

are the columns l1, l1 + 1, . . . , l2 of A and 0 represents the zero matrix of appropriated size. We notice that
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A
[1..i−1]
[1..i−1] and A

[i+1..n]
[i+1..n] are unitriangular matrices. Then, we can determine from A a unique unitriangular

matrix B ∈ Gn−1 given by

B =

[
A

[1..i−1]
[1..i−1] A

[i+1..n]
[1..i−1]

A
[i+1..n]
[i+1..n]

]

and conversely, given B =

[
B

[1..i−1]
[1..i−1] B

[i..n−1]
[1..i−1]

B
[i..n−1]
[i..n−1]

]
∈ Gn−1, we can always determine

A =

 B
[1..i−1]
[1..i−1] 0 B

[i..n−1]
[1..i−1]

1 0

B
[i..n−1]
[i..n−1]

 ∈ Gn
with Xi = {0}. That is, we can define a one to one correspondence between the indices of the entries of the

matrices of Gn−1 and the indices of entries of the matrices of Gn which are not in the i-th broken line as

follows:

(u, v) 7→ (u, v) ↑=


(u, v), if u < v < i,

(u, v + 1), if u < i ≤ v,
(u+ 1, v + 1), if i ≤ u < v.

and its inverse map is

(r, s) 7→ (r, s) ↓=


(r, s) if r < s < i,

(r, s− 1) if r < i < s,

(r − 1, s− 1) if i < r < s.

Proposition 2.1. Let A be a matrix of Gn such that Xi = {0}, that is,

A =

 A
[1..i−1]
[1..i−1] 0 A

[i+1..n]
[1..i−1]

1 0

A
[i+1..n]
[i+1..n]

 .
Then, A is a canonical matrix for Gn if and only if the matrix

B =

[
A

[1..i−1]
[1..i−1] A

[i+1..n]
[1..i−1]

A
[i+1..n]
[i+1..n]

]

is a canonical matrix of Gn−1. Moreover, the type of position (r, s) of A is:

1. The same one as position (r, s) ↓ in the matrix B, provided r 6= i 6= s;

2. If s = i, then it is an inert point if and only if it is preceded by the pivot point of its row.

3. If r = i, then it is an inert point if and only if it is above a pivot point of its column.

Proof. Let

A =

 A
[1..i−1]
[1..i−1] 0 A

[i+1..n]
[1..i−1]

1 0

A
[i+1..n]
[i+1..n]

 , B =

[
A

[1..i−1]
[1..i−1] A

[i+1..n]
[1..i−1]

A
[i+1..n]
[i+1..n]

]

X =

 u v w

0 0 x

0 0 y

 and X̂ =

[
u w

0 y

]
.
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Then,

AX −XA =


A

[1..i−1]
[1..i−1]x− xA

[1..i−1]
[1..i−1] A

[1..i−1]
[1..i−1]v − v Y

0 0 x− xA[i+1..n]
[i+1..n]

0 0 A
[i+1..n]
[i+1..n]y − yA

[i+1..n]
[i+1..n]

 ,
and

BX̂ − X̂B =

[
A

[1..i−1]
[1..i−1]x− xA

[1..i−1]
[1..i−1] Y

0 A
[i+1..n]
[i+1..n]y − yA

[i+1..n]
[i+1..n]

]
,

where Y = A
[1..i−1]
[1..i−1]w + A

[i+1..n]
[1..i−1]y − uA

[i+1..n]
[1..i−1] − wA

[i+1..n]
[i+1..n]. One can now easily show that an entry of A is

inert if and only if the corresponding entry of B is inert. All off-diagonal entries in row and column i of A

are 0, and hence A is canonical if and only if B is.

By Proposition 2.1, we can conclude that the study of the character of an entry can be reduced to the

study of the character of an entry in the matrix obtained after eliminating all indices i such that Xi = {0}.
This fact and an application of the principle of inclusion exclusion are enough to prove Theorem 1.1.

Remark 2.2. We notice that each canonical matrix of Gn with n− k null broken lines fixes and is fixed

by a canonical primitive matrix of Gk and a combination 1 ≤ i1 < · · · < ik ≤ n. Therefore, we obtain

r(Gn) = 1 +

n∑
k=2

(
n

k

)
r(T k).

From this equality jointly with the agreement

r(T 0) = 1, r(T 1) = 0, r(G0) = 1, r(G1) = 1,

the following relation is established,

r(T n) = (−1)n−1(n− 1) +

n∑
k=2

(−1)n−k
(
n

k

)
r(Gk).

3. On the number of primitive canonical matrices of Gn. As we know, the number of conjugacy

classes of Gn, with n ≤ 13 is given (see Vera-López and Arregi, [7, 9, 10]). Now, we have calculated r(T n)

for n = 4, . . . , 13. These are:

r(T 4) =3 (q − 1)
2

+ 2 (q − 1)
3
,

r(T 5) =10 (q − 1)
3

+ 5 (q − 1)
4
,

r(T 6) =15 (q − 1)
3

+ 40 (q − 1)
4

+ 18 (q − 1)
5

+ (q − 1)
6
,

r(T 7) =105 (q − 1)
4

+ 175 (q − 1)
5

+ 77 (q − 1)
6

+ 8 (q − 1)
7
,
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r(T 8) =105 (q − 1)
4

+ 700 (q − 1)
5

+ 924 (q − 1)
6

+ 432 (q − 1)
7

+ 74 (q − 1)
8

+ 4 (q − 1)
9
,

r(T 9) =1260 (q − 1)
5

+ 4690 (q − 1)
6

+ 5544 (q − 1)
7

+ 2823 (q − 1)
8

+ 665 (q − 1)
9

+ 72 (q − 1)
10

+ 3 (q − 1)
11
,

r(T 10) =945 (q − 1)
5

+ 12600 (q − 1)
6

+ 34440 (q − 1)
7

+ 38760 (q − 1)
8

+ 21810 (q − 1)
9

+ 6642 (q − 1)
10

+ 1140 (q − 1)
11

+ 110 (q − 1)
12

+ 5 (q − 1)
13
,

r(T 11) =17325 (q − 1)
6

+ 119350 (q − 1)
7

+ 274890 (q − 1)
8

+ 306405 (q − 1)
9

+ 190520 (q − 1)
10

+ 71204 (q − 1)
11

+ 16797 (q − 1)
12

+ 2563 (q − 1)
13

+ 242 (q − 1)
14

+ 11 (q − 1)
15
,

r(T 12) =10395 (q − 1)
6

+ 242550 (q − 1)
7

+ 1165780 (q − 1)
8

+ 2420220 (q − 1)
9

+ 2732598 (q − 1)
10

+ 1872834 (q − 1)
11

+ 833357 (q − 1)
12

+ 253023 (q − 1)
13

+ 54352 (q − 1)
14

+ 8352 (q − 1)
15

+ 890 (q − 1)
16

+ 60 (q − 1)
17

+ 2 (q − 1)
18
,

r(T 13) =270270 (q − 1)
7

+ 3078075 (q − 1)
8

+ 11931920 (q − 1)
9

+ 23335455 (q − 1)
10

+ 27065181 (q − 1)
11

+ 20340047 (q − 1)
12

+ 10509852 (q − 1)
13

+ 3909673 (q − 1)
14

+ 1085682 (q − 1)
15

+ 229866 (q − 1)
16

+ 36998 (q − 1)
17

+ 4355 (q − 1)
18

+ 338 (q − 1)
19

+ 13 (q − 1)
20
.

We notice that for n ≤ 13, r(T n) is a multiple of (q − 1)[
n+1
2 ] and we are interested in extending this

result for every n ∈ N. We remember that since the matrices of T n are canonical, two different matrices

of T n are not in the same conjugacy class. Therefore, in order to find r(T n) it is enough to calculate the

cardinality of T n.

First, we consider PCn, the subset of Cn (and also of T n) formed by primitive connected canonical

matrices of Gn. In order to find its cardinality, we need the following Lemma.

Lemma 3.1. Let A ∈ PCn be and R be the group of triangular matrices of GLn(q). Then, the conjugacy

class of A by R is formed by (q − 1)n−1 different conjugacy classes by Gn.

Proof. We note that R = DnGn, where Dn = {diag(d1, . . . , dn) | di ∈ F∗q}. So, given Y ∈ R, there exist

D ∈ Dn and T ∈ Gn such that Y = DT . Then, for A ∈ PCn, if

CR(A) = {DT ∈ R | T−1D−1ADT = A},

we have

CR(A) = ECGn(A),

where E = {λIn|λ ∈ F∗q}, that is, E is the group of scalar matrices over Fq. Thus, from the fundamental
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counting principle, we can deduce the cardinality of the ClR(A):

|ClR(A)| = |R : CR(A)| = |DnGn : ECGn(A)| = |Dn|
|E| |Gn : CGn(A)|

= (q − 1)n−1|ClGn(A)|,

since |Dn| = (q − 1)n and |E| = (q − 1).

Remark 3.2. If we consider a diagonal matrix D ∈ Dn such that D−1AD = A, it follows that whenever

aij 6= 0, then di = dj . But if A ∈ PCn, its graph is connected, so D is a scalar matrix.

Now, by applying Lemma 3.1, it is immediate to show the following Proposition.

Proposition 3.3. The number of primitive connected canonical matrices of Gn is a multiple of (q −
1)n−1.

By using an argument similar to Lemma 3.1, we can extend Lemma 3.1 to primitive canonical matrices.

Lemma 3.4. Let A ∈ T n be a primitive canonical matrix, with dA connected components and let R be

the subgroup of triangular matrices of GLn(q). Then, the conjugacy class of A by R consists of (q− 1)n−dA

different Gn-classes.

Remark 3.5. We notice that if dA = 1, then A is connected and Lemma 3.1 is a particular case of

Lemma 3.4.

Remark 3.6. It is easy to check that

ClR(A) = ∪D∈Dn
ClGn(AD),

where Dn = {diag(d1, . . . , dn) | di ∈ F∗q} is the diagonal group.

As a consequence of Lemma 3.4, it follows:

Proposition 3.7. The number of primitive canonical matrices of Gn with dA connected components is

a multiple of (q − 1)n−dA .

Proof. If ΓA is primitive but non-connected, let Γ1, . . . ,ΓdA be its connected components of sizes

n1, . . . , ndA . The action of the diagonal group Dn on these components is equivalent to the action of dA
diagonal groups of sizes ni, corresponding to each connected component the factor (q− 1)ni−1. The product

of all factors is
∏dA
i=1(q − 1)ni−1 = (q − 1)n−dA because (n1 − 1) + · · ·+ (ndA − 1) = n− dA.

If A ∈ T n is a primitive canonical matrix, then the maximum number of connected components of its

graph is
[
n
2

]
. Besides, the matrices of T n can be classified according to the number of connected components

in their graphs and this is a partition of T n. Then there is the next corollary.

Corollary 3.8. The cardinality of T n, and consequently r(T n), is a multiple of (q − 1)[
n+1
2 ].

4. Primitive canonical matrices of Gn with exactly
[
n+1
2

]
+ λ, λ = 0, 1, 2, non-zero entries.

We can classify the matrices of T n according to the number of non-zero off-diagonal entries. If A ∈ T n is a

primitive canonical matrix, we know that ΓA = (VA, EA) has no isolated vertices, so |EA| ≥
[
n+1
2

]
and A has,

at least,
[
n+1
2

]
non-zero off-diagonal entries. For λ ≥ 0, we define Aλ,n as the subset of primitive canonical

matrices of Gn with exactly
[
n+1
2

]
+ λ non-zero off-diagonal entries. We are interested in calculating the

cardinality of Aλ,n, for λ = 0, 1, 2. In order to do this, the primitive canonical matrices such that they are

forest matrices play a main role.
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Lemma 4.1. If A ∈ Aλ,n, with λ = 0, 1, 2, then A is a forest matrix. Moreover, the number of connected

components of ΓA is
[
n
2

]
− λ.

Proof. We write ΓA as the union of its dA connected components:

ΓA = (VA, EA) = Γ1 ∪ · · · ∪ ΓdA , Γi = (Vi, Ei),

vi = |Vi|, li = |Ei|, v = |VA| =
∑
i

vi, l = |EA| =
∑
i

li,

where Vi and Ei are the set of vertices and the set of edges of Γi, respectively.

For each connected component, we have the relation

li = vi − 1 + ei, ei ≥ 0,

where the values ei = 0 correspond to the connected components without cycles. From the preliminary

relations, if e =
∑
i ei, it follows

(4.1) l = v − dA + e.

Moreover, each connected component has, at least, two vertices (without considering the singletons), that

is, vi ≥ 2 and, therefore, v =
∑
i vi ≥ 2dA. The condition that A is primitive implies dA ≤ n

2 . We write

(4.2) l =

[
n+ 1

2

]
+ λ.

Then, from the equalities (4.1) and (4.2), it follows[
n+ 1

2

]
+ λ = n− dA + e,

hence

(4.3) λ =
[n

2

]
− dA + e,

[n
2

]
− dA ≥ 0, e ≥ 0.

Suppose that e > 0. If we look for canonical matrices of Gj , for j ≤ 6, we notice that for j = 2, 3, 4, 5 the

graphs of the primitive canonical matrices are trees and the first graph that contains a cycle appears for

j = 6. Hence, if ei ≥ 1 for some connected component Γi, then vi ≥ 6. This fact jointly with vj ≥ 2, for

j = 1, . . . , dA gives n = vi +
∑
j 6=i vj ≥ 6 + 2(dA − 1) = 2dA + 4, hence

[
n
2

]
− dA ≥ 2 and

λ =
[n

2

]
− dA + e ≥ 2 + 1 = 3.

Consequently, for λ = 0, 1, 2, it follows e = 0 and, hence, ei = 0 for all connected components. Then, by

substitution in (4.3), we can conclude dA =
[
n
2

]
− λ.

It is easy to prove the following lemma (see Vera-López and Arregi, [10][Lemma 2 and Theorem 4]):

Lemma 4.2. Let A ∈ Aλ,n be. If B ∈ Gn has all non-zero entries in the same indices as A, then

B ∈ Aλ,n. Therefore,

|Aλ,n| = aλ,n(q − 1)[
n+1
2 ]+λ,

where aλ,n is the number of arrangement of primitive canonical matrices of Aλ,n.
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Now, we find the value of aλ,n, for λ = 0, 1, 2. In the following, we consider 1
(k−u)! = 0, if k < u and we

denote for every n nonnegative integer by n!! to

n!! =


n(n− 2) . . . 5.3.1, if n ≥ 1 is odd;

n(n− 2) . . . 6.4.2, if n ≥ 2 is even;

1, if n = 0.

.

Proposition 4.3. |A0,n| = a0,n(q − 1)[
n+1
2 ], where

a0,n =


(

2k
2 ... 2

)
1
k! = (2k − 1)!!, if n = 2k;

(
2k+1

3 2 ... 2

)
1

(k−1)! =
(
2k+1

3

)
(2k − 3)!!, if n = 2k + 1.

Proof. By applying Lemma 4.2, we know that

|A0,n| = a0,n(q − 1)[
n+1
2 ],

where a0,n is the number of different zero-nonzero patterns of their entries for primitive canonical matrices

of A0,n. Let A ∈ A0,n be. Then, ΓA has order n with no isolated vertices and exactly
[
n+1
2

]
edges.

Consequently, all vertices of ΓA have degree 1 or all but one vertex have degree one and that vertex has

degree 2. If all vertices have degree 1, then n = 2k and

a0,n = a0,2k =

(
2k

2 . . . 2

)
1

k!
= (2k − 1)!!.

If all vertices but one have degree 1 and that vertex has degree 2, then n = 2k + 1 and

a0,n = a0,2k+1 =

(
2k + 1

3 2 . . . 2

)
1

(k − 1)!
=

(
2k + 1

3

)
(2k − 3)!!.

Remark 4.4. We can also express a0,n by

a0,n =

(
2

[
n+ 1

2

]
− 1

)
!!

(
[n+1

2 ]− 4

3
· ε+ 1

)
,

with ε = 0, if n is even or ε = 1, if n is odd.

Proposition 4.5. |A1,n| = a1,n(q − 1)[
n+1
2 ]+1, where

a1,n =


2 ·
(

2k
4 2 ... 2

)
1

(k−2)! +
(

2k
3 3 2 ... 2

)
1
2!

1
(k−3)! , if n = 2k;

5 ·
(

2k+1
5 2 ... 2

)
1

(k−2)! + 2 ·
(

2k+1
4 3 2 ... 2

)
1

(k−3)!
+
(

2k+1
3 3 3 2 ... 2

)
1
3!

1
(k−4)! , if n = 2k + 1.

Proof. From Lemma 4.1, we know that the number of connected components of A ∈ A1,n is dA =
[
n
2

]
−1.

Furthermore, by applying Lemma 4.2, we know that

|A1,n| = a1,n(q − 1)[
n+1
2 ]+1,
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where a1,n is the number of different zero-nonzero patterns of their entries for primitive canonical matrices

of A1,n. Now all that remains is to calculate a1,n.

If A ∈ A1,n, then A is a forest matrix and ΓA is a graph of order n with no isolated vertices and exactly[
n+1
2

]
+ 1 edges. Thus,

1. If n = 2k, then
∑
v∈VA

d(v) = 2k+2. Obviously, it follows that ∆(ΓA) > 1. We assert that ∆(ΓA) =

2. In fact, if there was a vertex of degree 3, this would mean that one connected component of ΓA
has 4 vertices and the rest only 2. But the submatrix corresponding to the connected component

with 4 vertices, one of which is of degree 3, is not a canonical submatrix. So, ∆(ΓA) = 2. The

two vertices of degree 2 can belong to the same connected component or not. If they belong to the

same connected component, it implies that there is a connected component with 4 vertices, two of

them with degree 2. But this connected component corresponds to a primitive connected canonical

submatrix of order 4 and there are 2 different zero-nonzero patterns for this. If the vertices of

degree 2 belong to different components, then there are two connected components with 3 vertices.

Consequently,

a1,2k = 2 ·
(

2k
4 2 ... 2

)
1

(k−2)! +
(

2k
3 3 2 ... 2

)
1
2!

1
(k−3)! .

2. If n = 2k + 1, then
∑
v∈VA

d(v) = 2k + 4. Again, by considering the canonical character of the

matrices, it is easy to check that ∆(ΓA) = 2. So, there are three vertices with degree 2 and n − 3

with degree 1. The vertices of degree 2 can belong to the same connected component or not. If they

belong to the same connected component, then there is one connected component with 5 vertices

and the others have 2 vertices in ΓA. If two vertices of degree 2 belong to the same component

and the other one to a different component, then ΓA has one connected component with 4 vertices,

another one with 3 vertices and the rest ones with 2 vertices. If the vertices of degree 2 belong to

different connected components, then ΓA has three connected components with 3 vertices and the

rest ones of size 2. Thus, bearing in mind the zero-nonzero patterns for canonical matrices of size

5, 4, 3 and 2, we conclude that

a1,2k+1 = 5 ·
(

2k + 1

5 2 . . . 2

)
1

(k − 2)!
+ 2 ·

(
2k + 1

4 3 2 . . . 2

)
1

(k − 3)!
+

(
2k + 1

3 3 3 2 . . . 2

)
1

3!

1

(k − 4)!
.

Remark 4.6. Another expression for a1,n is

a1,n =

(
2

[
n+ 1

2

]
− 1

)
!!

[n2 ]([n2 ]− 1)q1(n)

27 · 6
,

where q1(n) = (2
[
n
2

]2
+ 5

[
n
2

]
) · ε+ 3(

[
n
2

]
+ 1)(5(1− ε) + 1) and ε = 0, if n is even or ε = 1, if n is odd.

Finally, by using similar argument, we calculate a2,n:
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Proposition 4.7. |A2,n| = a2,n(q − 1)[
n+1
2 ]+2, where

a2,n =



18 ·
(

2k
6 2 ... 2

)
1

(k−3)! + 5 ·
(

2k
5 3 2 ... 2

)
1

(k−4)!
+2 · 2 ·

(
2k

4 4 2 ... 2

)
1
2!

1
(k−4)! + 2 ·

(
2k

4 3 3 2 ... 2

)
1
2!

1
(k−5)!

+
(

2k
3 3 3 3 2 ... 2

)
1
4!

1
(k−6)! , if n = 2k;

77 ·
(

2k+1
7 2 ... 2

)
1

(k−3)! + 18 ·
(

2k+1
6 3 2 ... 2

)
1

(k−4)!
+5 · 2 ·

(
2k+1

5 4 2 ... 2

)
1

(k−4)! + 5 ·
(

2k+1
5 3 3 2 ... 2

)
1
2!

1
(k−5)!

+2 · 2 ·
(

2k+1
4 4 3 2 ... 2

)
1
2!

1
(k−5)!

+2 ·
(

2k+1
4 3 3 3 2 ... 2

)
1
3!

1
(k−6)!

+
(

2k+1
3 3 3 3 3 2 ... 2

)
1
5!

1
(k−7)! , if n = 2k + 1.

Proof. By Lemma 4.1, we know that the number of connected components of A ∈ A2,n is dA =
[
n
2

]
− 2.

Furthermore, by Lemma 4.2, we know that

|A2,n| = a2,n(q − 1)[
n+1
2 ]+2,

where a2,n is the number of different zero-nonzero patterns of the entries for primitive canonical matrices

of A2,n. A similar argument of Proposition 4.3 and Proposition 4.5 yields that the maximum order of a

connected component of ΓA is 6, if n is even, or 7, if n is odd and by considering the zero-nonzero patterns

of canonical tree matrices of size 2 to 7, we conclude the expression of a2,n.

Remark 4.8. Another expression for a2,n is

a2,n =

[
n
2

] ([
n
2

]
− 1
) ([

n
2

]
− 2
)
q2(n)

2 · 36 · 5

(
2

[
n+ 1

2

]
− 1

)
!!,

with

q2(n) =
[n

2

]4
ε+ 12

[n
2

]3
+ 29

[n
2

]2
+ 69

[n
2

]
+ 18 +

(
3
[n

2

]3
+ 61

[n
2

]2
− 39

[n
2

]
+ 135

)
(1− ε)

and ε = 0, if n is even, or ε = 1, if n is odd.

If we write T n = ∪λAλ,n and bearing in mind that r(T n) = T n and Lemma 4.2 and Propositions 4.3,

4.5 and 4.7, it follows:

Corollary 4.9.

r(T n) ≡
2∑
i=0

ai,n(q − 1)[
n+1
2 ]+imod(q − 1)[

n+1
2 ]+3.

It is clear that if we know ai,n for i = 0, 1, . . . , l, then we can determine r(Gn) modulus (q − 1)8+l.
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[3] S. Goodwin and G. Röhrle. Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups. J. Algebra,

321:3321–3334, 2009.
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