2016

A note on a conjecture for the distance Laplacian matrix

Celso Marques da Silva Junior
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, celsomjr@gmail.com

Maria Aguiéiras Alvarez de Freitas
Universidade Federal do Rio de Janeiro, maguieras@im.ufrj.br

Renata Raposo Del-Vecchio
Universidade Federal Fluminense, renata@vm.uff.br

Follow this and additional works at: http://repository.uwyo.edu/ela

Part of the [Discrete Mathematics and Combinatorics Commons](https://digitalcommons.discrete.math.com/)

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.3002

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
A NOTE ON A CONJECTURE FOR THE DISTANCE LAPLACIAN MATRIX∗

CELSO M. DA SILVA JR.†, MARIA AGUIEIRAS A. DE FREITAS‡, AND RENATA R. DEL-VECCHIO§

Abstract. In this note, the graphs of order \(n \) having the largest distance Laplacian eigenvalue of multiplicity \(n - 2 \) are characterized. In particular, it is shown that if the largest eigenvalue of the distance Laplacian matrix of a connected graph \(G \) of order \(n \) has multiplicity \(n - 2 \), then \(G \cong S_n \) or \(G \cong K_{p,p} \), where \(n = 2p \). This resolves a conjecture proposed by M. Aouchiche and P. Hansen in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak Mathematical Journal, 64(3):751–761, 2014.]. Moreover, it is proved that if \(G \) has \(P_5 \) as an induced subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of \(G \) is less than \(n - 3 \).

Key words. Distance Laplacian matrix, Laplacian matrix, Largest eigenvalue, Multiplicity of eigenvalues.

AMS subject classifications. 05C12, 05C50, 15A18.

1. Introduction. Let \(G = (V,E) \) be a connected graph and the distance (the length of a shortest path) between vertices \(v_i \) and \(v_j \) of \(G \) be denoted by \(d_{i,j} \). The distance matrix of \(G \), denoted by \(D(G) \), is the \(n \times n \) matrix whose \((i,j)\)-entry is equal to \(d_{i,j} \), \(i, j = 1, 2, \ldots, n \). The transmission \(Tr(v_i) \) of a vertex \(v_i \) is defined as the sum of the distances from \(v_i \) to all other vertices in \(G \). For more details about the distance matrix we suggest, for example, [5]. M. Aouchiche and P. Hansen [3] introduced the Laplacian for the distance matrix of a connected graph \(G \) as \(D^L(G) = \text{Tr}(G) - D(G) \), where \(\text{Tr}(G) \) is the diagonal matrix of vertex transmissions. We write \((\partial^L_1, \partial^L_2, \ldots, \partial^L_n = 0)\), for the distance Laplacian spectrum of a connected graph \(G \), the \(D^L \)-spectrum, and assume that the eigenvalues are arranged in a nonincreasing order. The multiplicity of the eigenvalue \(\partial^L_i \) is denoted by \(m(\partial^L_i) \), for \(1 \leq i \leq n \). We often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues when we write the \(D^L \)-spectrum. The distance Laplacian matrix has been recently

∗Received by the editors on May 4, 2015. Accepted for publication on December 31, 2015.
†COPPE – Universidade Federal do Rio de Janeiro and Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca, Rio de Janeiro, Brasil (celsomjr@gmail.com). Supported by CNPq.
‡Instituto de Matematica and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil (maguieiras@im.ufrj.br). Supported by CNPq and Faperj.
§Instituto de Matematica, Universidade Federal Fluminense, Niteroi, Brasil (renata@vm.uff.br). Supported by CNPq.
A Note on a Conjecture for the Distance Laplacian Matrix

studied ([2, 4, 6]) and, in [4], M. Aouchiche and P. Hansen proposed some conjectures about it. Among them, we consider in this work the following one:

Conjecture 1.1. [4] If G is a graph on $n \geq 3$ vertices and $G \not\cong K_n$, then $m(\partial L_1(G)) \leq n - 2$ with equality if and only if G is the star S_n or $n = 2p$ for the complete bipartite graph $K_{p,p}$.

In this paper, we prove the conjecture. In order to obtain this result we analyze how the existence of P_4 as an induced subgraph influences the D^L-spectrum of a connected graph. We conclude that, in this case, the largest distance Laplacian eigenvalue has multiplicity less than or equal to $n - 3$. This fact motivated us to also investigate the influence of an induced P_5 subgraph in the D^L-spectrum of a graph. We prove that if a graph has an induced P_5 subgraph then the largest eigenvalue of its distance Laplacian matrix has multiplicity at most $n - 4$. Although we do not make a general approach by characterizing the graphs that have the largest distance Laplacian eigenvalue with multiplicity $n - 3$, some considerations on this topic are made.

2. Preliminaries. In what follows, $G = (V, E)$, or just G, denotes a graph with n vertices and \overline{G} denotes its complement. The diameter of a connected graph G is denoted by $\text{diam}(G)$. As usual, we write, respectively, P_n, C_n, S_n and K_n, for the path, the cycle, the star and the complete graph, all with n vertices. We denote by $K_{p,p}$ and by $K_{p,p,p}$ the balanced complete bipartite and tripartite graph, respectively. Now, we recall the definitions of some operations with graphs that will be used. For this, let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be vertex disjoint graphs:

- The union of G_1 and G_2 is the graph $G_1 \cup G_2$ (or $G_1 + G_2$), whose vertex set is $V_1 \cup V_2$ and whose edge set is $E_1 \cup E_2$;
- The complete product or join of graphs G_1 and G_2 is the graph $G_1 \vee G_2$ obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2.

A graph G is a cograph, also known as a decomposable graph, if no induced subgraph of G is isomorphic to P_4 [1]. About the cographs, we also have the following characterizations:

Theorem 2.1. [1] Given a graph G, the following statements are equivalent:

- G is a cograph.
- The complement of any connected subgraph of G with at least two vertices is disconnected.
- Every connected subgraph of G has diameter less than or equal to 2.

We denote by $(\mu_1, \mu_2, \ldots, \mu_n = 0)$ the L-spectrum of G, i.e., the spectrum of the Laplacian matrix of G, and assume that the eigenvalues are labeled such that
\[\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0. \] It is well known that the multiplicity of the Laplacian eigenvalue 0 is equal to the number of components of \(G \) and that \(\mu_{n-1}(G) = n - \mu_i(G) \), \(\forall 1 \leq i \leq n - 1 \) (see [8] for more details).

The following results regarding the distance Laplacian matrix are already known.

Theorem 2.2. [3] Let \(G \) be a connected graph on \(n \) vertices with \(\text{diam}(G) \leq 2 \). Let \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} > \mu_n = 0 \) be the Laplacian spectrum of \(G \). Then the distance Laplacian spectrum of \(G \) is \(2n - \mu_{n-1} \geq 2n - \mu_{n-2} \geq \cdots \geq 2n - \mu_1 > \partial^L_{n-1} = 0 \). Moreover, for every \(i \in \{1, 2, \ldots, n-1\} \) the eigenspaces corresponding to \(\mu_i \) and to \(2n - \mu_i \) are the same.

Theorem 2.3. [3] Let \(G \) be a connected graph on \(n \) vertices. Then \(\partial^L_{n-1} = n \) if and only if \(\overline{G} \) is disconnected. Moreover, the multiplicity of \(n \) as an eigenvalue of \(\mathcal{D}^L \) is one less than the number of components of \(\overline{G} \).

Theorem 2.4. [3] If \(G \) is a connected graph on \(n \geq 2 \) vertices then \(m(\partial^L_1) \leq n-1 \) with equality if and only if \(G \) is the complete graph \(K_n \).

We finish this section enunciating the Cauchy interlacing theorem, that will be necessary for what follows:

Theorem 2.5. [7] Let \(A \) be a real symmetric matrix of order \(n \) with eigenvalues \(\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A) \) and let \(M \) be a principal submatrix of \(M \) with order \(m \leq n \) and eigenvalues \(\lambda_1(M) \geq \lambda_2(M) \geq \cdots \geq \lambda_m(M) \). Then \(\lambda_i(A) \geq \lambda_i(M) \geq \lambda_{i+n-m}(A) \), for all \(1 \leq i \leq m \).

3. Proof of the conjecture.

The next lemmas will be useful to prove the main results of this section:

Lemma 3.1. If \(G \) is a connected graph on \(n \geq 2 \) vertices and Laplacian spectrum equal to \((n, \mu_2, \ldots, \mu_2, \mu_2, 0) \), with \(\mu_2 \neq n \), then \(G \cong S_n \) or \(G \cong K_{p,p} \), where \(n = 2p \).

Proof. In this case, the \(L \)-spectrum of \(\overline{G} \) is \((n - \mu_2, n - \mu_2, \ldots, n - \mu_2, 0, 0) \) and, then, \(\overline{G} \) has exactly 2 components. As each component has no more than two distinct Laplacian eigenvalues, both are isolated vertices or complete graphs. Since the components also have all nonzero eigenvalues equal, we have \(\overline{G} \cong K_1 \sqcup K_{n-1} \) or \(\overline{G} \cong K_p \cup K_p \), where \(n = 2p \). Therefore, \(G \cong S_n \) or \(G \cong K_{p,p} \). On the other hand, it is already known that the \(L \)-spectrum of \(S_n \) and \(K_{p,p} \) are, respectively, \((n, 1, \ldots, 1, 0) \) and \((n, p, \ldots, p, 0) \). \(\Box \)

Lemma 3.2. Let \(A \) be a real symmetric matrix of order \(n \) with largest eigenvalue \(\lambda \) and \(M \) the \(m \times m \) principal submatrix of \(A \) obtained from \(A \) by excluding the \(n - m \) last rows and columns. If \(M \) also has \(\lambda \) as an eigenvalue, associated with the normalized eigenvector \(\mathbf{x} = (x_1, \ldots, x_m) \), then \(\mathbf{x}^* = (x_1, \ldots, x_m, 0, \ldots, 0) \) is a
corresponding eigenvector to λ in A.

Proof. As λ is an eigenvalue of M corresponding to x, then $\lambda = \langle Mx, x \rangle$. So, it is enough to see that $\langle Mx, x \rangle = \langle Ax^*, x^* \rangle$. □

A well known result about the Laplacian matrix ([8]) says that, if G is a graph with at least one edge then $\mu_1 \geq \Delta + 1$, where Δ denotes the maximum degree of G. It is possible to get an analogous lower bound for the largest distance Laplacian eigenvalue of a connected graph G:

Theorem 3.3. If G is a connected graph then $\partial_1^L (G) \geq \max_{i \in V} \Tr(v_i) + 1$. Equality is attained if and only if $G \cong K_n$.

Proof. Suppose, without loss of generality, that $\Tr(v_1) = \max_{i \in V} \Tr(v_i) = \Tr_{\text{max}}$ and let $x = \left(1, \frac{1}{n-1}, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)$. Then

$$\partial_1^L (G) = \max_{y \perp 1} \frac{\langle D^L y, y \rangle}{\|y\|^2} \geq \frac{\langle D^L x, x \rangle}{\|x\|^2} = \left(1 + \frac{1}{n-1}\right)^2 \left(\sum_{i=1}^{n} \frac{d_{i,i}}{\|x\|^2} \right) = \frac{n^2 \Tr_{\text{max}}}{(n-1)^2 \|x\|^2}.$$

Since, $\|x\|^2 = \frac{n}{n-1}$, we obtain

$$\partial_1^L (G) \geq \frac{n}{n-1} \Tr_{\text{max}} = \Tr_{\text{max}} + \frac{\Tr_{\text{max}}}{n-1} \geq \Tr_{\text{max}} + 1.$$

(3.1)

If the equality is attained for a connected graph G then, from (3.1), we conclude that $\Tr_{\text{max}} = n - 1$. As $G \cong K_n$ is the unique graph with this property and $\partial_1^L (K_n) = n$, the result is proven. □

In order to solve Conjecture 1.1, we first investigate how the existence of P_3 as an induced subgraph influences the multiplicity of the largest eigenvalue of the distance Laplacian matrix of a graph:

Theorem 3.4. If the connected graph G has at least 4 vertices and it is not a cograph then $m(\partial_1^L) \leq n - 3$.

Proof. Let G be a connected graph on $n \geq 4$ vertices which is not a cograph. Then G has P_4 as an induced subgraph. Let M be the principal submatrix of $D^L (G)$ associated with this induced subgraph and denote the eigenvalues of M by $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$. Suppose that $m(\partial_1^L) \geq n - 3$. By Cauchy interlacing (Theorem 2.5) is easy to check that $\lambda_1 = \lambda_2 = \partial_4^L$. By Lemma 3.2, if $x = (x_1, x_2, x_3, x_4)$ and $y = (y_1, y_2, y_3, y_4)$ are eigenvectors associated to ∂_4^L in M, then $x^* = (x_1, x_2, x_3, x_4, 0, \ldots, 0)$ and $y^* = (y_1, y_2, y_3, y_4, 0, \ldots, 0)$ are eigenvectors associated to ∂_4^L in $D^L (G)$. As $x^*, y^* \perp 1$, with a linear combination of this vectors, is possible to get $z^* = (z_1, z_2, 0, z_4, 0, \ldots, 0)$
such that $z^* \perp 1$ and it is still an eigenvector for $D^L(G)$ associated to ∂^L_1. Thus, $z = (z_1, z_2, 0, z_4)$ is an eigenvector for M such that $z_1 + z_2 + z_4 = 0$.

Now, we observe that there are just two options for the matrix M:

$$
M_1 = \begin{bmatrix}
t_1 & -1 & -2 & -3 \\
-1 & t_2 & -1 & -2 \\
-2 & -1 & t_3 & -1 \\
-3 & -2 & -1 & t_4
\end{bmatrix}
\text{ or } M_2 = \begin{bmatrix}
t_1 & -1 & -2 & -2 \\
-1 & t_2 & -1 & -2 \\
-2 & -1 & t_3 & -1 \\
-2 & -2 & -1 & t_4
\end{bmatrix},
$$

where t_1, t_2, t_3, t_4 denote the transmissions of the vertices that induce P_4 in $D^L(G)$.

From the third entry of $M_1z = \lambda_1z$ it follows that $-2z_1 - z_2 - z_4 = 0$. This, together with the fact that $z_1 + z_2 + z_4 = 0$, allows us to conclude that $(0, 1, 0, -1)$ is an eigenvector corresponding to ∂^L_2 in M_1. From the first entry of $M_1z = \lambda_1z$, we have a contradiction. Similarly we have a contradiction, considering M_2 instead of M_1. \(\square\)

The next theorem resolves the Conjecture 1.1:

\textbf{Theorem 3.5.} If G is a graph on $n \geq 3$ vertices and $G \not\cong K_n$, then $m(\partial^L_1(G)) \leq n - 2$ with equality if and only if G is the star S_n or the complete bipartite graph $K_{p,p}$, if $n = 2p$.

\textit{Proof.} As $G \not\cong K_n$, we already know that $m(\partial^L_1(G)) \leq n - 2$ (Theorem 2.4). Therefore, it remains to check for which graphs we have $m(\partial^L_1(G)) = n - 2$. Let G be a connected graph satisfying this property. Thus, $m(\partial^L_{n-1}(G)) = 1$. We consider two cases, when $\partial^L_{n-1}(G) = n$ and when $\partial^L_{n-1}(G) \neq n$:

- If $\partial^L_{n-1}(G) = n$, the D^L-spectrum of G is $(\partial^L_1, \partial^L_2, \ldots, \partial^L_n, n, 0)$, with $\partial^L_1(G) \neq n$. By Theorem 2.3, G is disconnected and has exactly two components. Furthermore, as G is connected and \overline{G} is disconnected, diam$(G) \leq 2$. So, by Theorem 2.2, the L-spectrum of G is $(n, 2n - \partial^L_1, \ldots, 2n - \partial^L_1, 2n - \partial^L_1, 0)$ and, from Lemma 3.1, $G \cong S_n$ or $G \cong K_{p,p}$;

- If $\partial^L_{n-1}(G) \neq n$, the D^L-spectrum of G is $(\partial^L_1, \partial^L_2, \ldots, \partial^L_{n-1}, 0)$ with $\partial^L_1 \neq \partial^L_{n-1}$ and $\partial^L_{n-1} \neq n$. We claim there is no graph with this property. Indeed, by Theorem 2.3, as $\partial^L_{n-1} \neq n$, \overline{G} is also connected. By Theorem 2.1, G has P_4 as an induced subgraph and, therefore, by Theorem 3.4, G cannot have a distance Laplacian eigenvalue with multiplicity $n - 2$.

It is already known [4] the D^L-spectra of the star and the complete bipartite graph, and this complete the proof:

- D^L-spectrum of S_n: $((2n - 1)(n-2), n, 0)$;
- D^L-spectrum of $K_{p,p}$: $((3p)(n-2), n, 0)$. \(\square\)
4. Graphs with P_5 as forbidden subgraph. In the previous section, we established a relationship between the D^L-spectrum of a connected graph and the existence of a P_4 induced subgraph. Then, it is natural to think how the existence of a P_5 induced subgraph could influence its D^L-spectrum. In this case, we prove the following theorem, regarding the largest distance Laplacian eigenvalue:

Theorem 4.1. If G is a connected graph on $n \geq 5$ vertices and $m(\partial^L(G)) = n - 3$ then G does not have a P_5 as induced subgraph.

Proof. Suppose that G has a P_5 as an induced subgraph and let M be the principal submatrix of $D^L(G)$ corresponding to the vertices in this P_5. Denote the eigenvalues of M by $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4 \geq \lambda_5$. If $m(\partial^L(G)) = n - 3$, by Cauchy interlacing theorem it follows that $\lambda_1 = \lambda_2 = \partial^L_1$. By Lemma 3.2, if $x = (x_1, x_2, x_3, x_4, x_5)$ and $y = (y_1, y_2, y_3, y_4, y_5)$ are eigenvectors associated to ∂^L_1 for M, then $x^* = (x_1, x_2, x_3, x_4, x_5, 0, \ldots, 0)$ and $y^* = (y_1, y_2, y_3, y_4, y_5, 0, \ldots, 0)$ are eigenvectors for $D^L(G)$, associated to ∂^L_5. As $x^*, y^* \perp 1$, with a linear combination of this vectors, is possible to get $z^* = (z_1, z_2, z_3, z_4, 0, \ldots, 0)$ such that $z^* \perp 1$, and it is still an eigenvector for $D^L(G)$ associated to ∂^L_5. Then, $z = (z_1, z_2, z_3, z_4, 0)$ is an eigenvector for M such that $z_1 + z_2 + z_3 + z_4 = 0$.

Now, we observe that the matrix M can be written as

$$
M = \begin{bmatrix}
t_1 & -1 & -2 & -d_{1,4} & -d_{1,5} \\
-1 & t_2 & -1 & -2 & -d_{2,5} \\
-2 & -1 & t_3 & -1 & -2 \\
-d_{1,4} & -2 & -1 & t_4 & -1 \\
-d_{5,1} & -d_{5,2} & -2 & -1 & t_5
\end{bmatrix},
$$

(4.1)

where t_1, t_2, t_3, t_4, t_5 denote the transmissions of the vertices that induce P_5 in $D^L(G)$, $d_{1,5} = 2, 3$ or 4, $d_{2,5} = 2$ or 3 and $d_{1,4} = 2$ or 3. As P_5 is an induced subgraph, it is easy to check that if $d_{1,4} = 4$ then $d_{2,5} = 3$ and $d_{1,4} = 3$. Considering the following cases, we see that all possibilities lead to a contradiction:

- $d_{1,5} = 2$ and $d_{2,5} = 2$:

 As $z.1$, from the fifth entry of $Mz = \partial^L_5z$, it follows that $z_4 = 0$. So, using also the fourth entry of this equation, we have

$$
\begin{align*}
-d_{1,4}z_1 + 2z_2 - z_3 &= 0, \\
z_1 + z_2 + z_3 &= 0.
\end{align*}
$$

If $d_{1,4} = 2$, then $z_3 = 0$ and $z_1 = -z_2$. So, we can assume that $z = (-1, 1, 0, 0, 0)$ is an eigenvector of M, which is a contradiction according to the third entry of the equation. If $d_{1,4} = 3$, then $z_3 = z_1$ and $z_2 = -2z_1$. So, we can assume that $z = (1, -2, 1, 0, 0)$ is an eigenvector of M. From the third
entry of the equation, we conclude that $t_3 = \partial_1^L$, which is a contradiction (Theorem 3.3).

- $d_{1,5} = 2$ and $d_{2,5} = 3$:
 As $z \perp 1$, from the fifth entry of $Mz = \partial_1^Lz$, it follows that $z_2 = z_4 = 1$ and $z_1 + z_3 = -2$. So, we can consider $z = (z_1, 1, -2 - z_1, 1, 0)$, and from the second entry of the same equation, we conclude that $t_2 = \partial_2^L$.

- If $d_{1,5} = 3$ and $d_{2,5} = 2$:
 As $z \perp 1$, from the fifth entry of $Mz = \partial_1^Lz$, it follows that $z_1 = z_4 = 1$ and $z_2 + z_3 = -2$. So, we can consider $z = (1, -2 - z_3, z_3, 1, 0)$, and we have
 \[
 \begin{cases}
 t_1 + 2 - z_3 - d_{1,4} = \partial_1^L, \\
 -d_{1,4} + 4 + z_3 + t_4 = \partial_1^L.
 \end{cases}
 \]
 If $d_{1,4} = 2$, by Theorem 3.3 we have
 \[
 \begin{cases}
 z_3 = t_1 - \partial_1^L \leq -1, \\
 z_3 = \partial_1^L - t_4 \geq 1.
 \end{cases}
 \]
 If $d_{1,4} = 3$, again by Theorem 3.3, we have
 \[
 \begin{cases}
 z_3 = t_1 - \partial_1^L - 1 \leq -2, \\
 z_3 = \partial_1^L - t_4 - 1 \geq 0.
 \end{cases}
 \]

- If $d_{1,5} = d_{2,5} = 3$:
 As $z \perp 1$, from the fifth entry of $Mz = \partial_1^Lz$, it follows that $z_3 = -2z_4$ and $z_1 + z_2 = 1$. So, we can consider $z = (z_1, 1 - z_1, -2, +1, 0)$, and we have
 \[
 \begin{cases}
 -z_1 - 2t_3 - 2 = -2\partial_1^L, \\
 (2 - d_{1,4})z_1 + t_4 = \partial_1^L.
 \end{cases}
 \]
 If $d_{1,4} = 2$, then $t_4 = \partial_1^L$, which is a contradiction. If $d_{1,4} = 3$, then
 \[
 \begin{cases}
 z_1 = 2(\partial_1^L - t_3 - 1), \\
 z_1 = t_4 - \partial_1^L,
 \end{cases}
 \]
 which is a contradiction, since Theorem 3.3 implies $z_1 < 0$ and $z_1 > 0$.

- $d_{1,5} = 4$, $d_{2,5} = 3$ and $d_{1,4} = 3$:
 As $z \perp 1$, from the fifth entry of $Mz = \partial_1^Lz$, it follows that $-3z_1 - 2z_2 - z_3 = 0$. From this fact and the fourth entry of this equation, we obtain $t_4z_4 = z_4\partial_1^L$.
 If $z_4 \neq 0$, we get a contradiction. If $z_4 = 0$, we conclude that $-2z_1 - z_2 = 0$. So, we can consider $z = (1, -2, 1, 0, 0)$, which implies in $t_1 = \partial_1^L$, a contradiction. □
Although by this theorem we cannot completely describe the graphs that have largest distance Laplacian eigenvalue with multiplicity \(n - 3 \), it is possible to obtain a partial characterization and some remarks about this issue.

Proposition 4.2. Let \(G \) be a connected graph with order \(n \geq 4 \) such that \(m(\partial^n L) = n - 3 \). If \(\partial^n L_{n-1} = n \) is an eigenvalue with multiplicity 2 then \(G \cong K_{\frac{n-1}{2}, \frac{n}{2}, \frac{n}{2}} \), or \(G \cong K_{\frac{n-1}{2}, \frac{n}{2}, \frac{n}{2}} \cup K_1 \), or \(G \cong K_{n-2} \cup K_2 \).

Proof. As \(\partial^n L_{n-1} = n \), \(\overline{G} \) is disconnected and \(\text{diam}(G) = 2 \). Moreover, by Theorem 2.2, the \(L \)-spectrum of \(\overline{G} \) is

\[
(n - \partial^n L_1, \ldots, n - \partial^n L_1, 0, 0, 0),
\]

that is, \(\overline{G} \) has three components, all of them with the same nonzero eigenvalue. So, the three components are isolated vertices or complete graphs with the same order, that is, \(\overline{G} \cong K_{\frac{n-1}{2}} \cup K_{\frac{n}{2}} \cup K_{\frac{n}{2}} \), if 3 \(\mid n \), \(\overline{G} \cong K_{\frac{n-1}{2}} \cup K_{\frac{n}{2}} \cup K_1 \), if 2 \(\mid (n - 1) \), or \(\overline{G} \cong K_{n-2} \cup K_1 \cup K_1 \).

Finally, as the graphs we have cited above have diameter 2, by Theorem 2.2, its known to its \(L \)-spectrum to write the \(D^L \)-spectrum:

- \(D^L \)-spectrum of \(K_{\frac{n-1}{2}, \frac{n}{2}, \frac{n}{2}} \) : \(\left(\frac{4n}{3}, 2, 0 \right) \);
- \(D^L \)-spectrum of \(K_{\frac{n-1}{2}} \cup K_{\frac{n}{2}, \frac{n}{2}} \cup K_1 \) : \(\left(\frac{3n - 1}{2}, 2, 0 \right) \);
- \(D^L \)-spectrum of \(K_{n-2} \cup K_2 \) : \(\left(2 + (n - 1), 2 \right) \).

To finish the characterization of the graphs whose largest eigenvalue of the distance Laplacian matrix has multiplicity \(n - 3 \) we should analyze two situations:

- If \(\partial^n L_{n-1} = n \) is an eigenvalue with multiplicity one;
- If \(\partial^n L_{n-1} \neq n \).

Although we have not characterized precisely these two cases, proceeding similarly to the last proposition, we can conclude in the first case that if the \(D^L \)-spectrum of a connected graph \(G \) is \((\partial^n L_1, \ldots, \partial^n L_1, \partial^n L_{n-2}, n, 0) \) then the \(L \)-spectrum of \(\overline{G} \) is written as \((\partial^n L_1 - n, \ldots, \partial^n L_1 - n, \partial^n L_{n-2} - n, 0, 0) \). So, \(\overline{G} \) is a graph with 2 components such that the largest Laplacian eigenvalue has multiplicity \(n - 3 \). For example, the graph \(G \cong K_{2, n-2} \) has this property since the \(D^L \)-spectrum is equal to \((2n - 2)^{(n-3)}, n + 2, n, 0) \).

In the last case, as \(\partial^n L_{n-1} \neq n \), then \(\overline{G} \) is a connected graph. So, \(G \) has \(P_4 \) as an induced subgraph. On the other hand, from Theorem 4.1, \(G \) does not have \(P_5 \) as an induced subgraph. For example, \(C_5 \) satisfies this condition, since its \(D^L \)-spectrum is \(\left(\frac{15 + \sqrt{3}}{2}, \frac{15 + \sqrt{3}}{2}, \frac{15 - \sqrt{3}}{2}, \frac{15 - \sqrt{3}}{2}, 0 \right) \).
Acknowledgment. The authors are very grateful to Vladimir Nikiforov for the remarks and suggestions.

REFERENCES

