2017

Semilinear preservers of the immanants in the set of the doubly stochastic matrices

M. Antonia Duffner
University of Lisbon, mamonteiro@fc.ul.pt

Rosario Fernandes
Universidade Nova de Lisboa, Portugal, mrff@fct.unl.pt

Follow this and additional works at: http://repository.uwyo.edu/ela

Part of the Mathematics Commons

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.3190

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
SEMILINEAR PRESERVERS OF THE IMMANANTS IN THE SET OF DOUBLY STOCHASTIC MATRICES

M. ANTÓNIA DUFFNER† AND ROSÁRIO FERNANDES‡

Abstract. Let S_n denote the symmetric group of degree n and M_n denote the set of all n-by-n matrices over the complex field, \mathbb{C}. Let $\chi : S_n \rightarrow \mathbb{C}$ be an irreducible character of degree greater than 1 of S_n. The immanant $d_\chi : M_n \rightarrow \mathbb{C}$ associated with χ is defined by

$$d_\chi(X) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^{n} X_{j\sigma(j)}, \quad X = [X_{jk}] \in M_n.$$

Let Ω_n be the set of all n-by-n doubly stochastic matrices, that is, matrices with nonnegative real entries and each row and column sum is one. We say that a map T from Ω_n into Ω_n is semilinear if

- is semilinear if $T(\lambda S_1 + (1 - \lambda)S_2) = \lambda T(S_1) + (1 - \lambda)T(S_2)$ for all $S_1, S_2 \in \Omega_n$ and for all real number λ such that $0 \leq \lambda \leq 1$;
- preserves d_χ if $d_\chi(T(S)) = d_\chi(S)$ for all $S \in \Omega_n$.

We characterize the semilinear surjective maps T from Ω_n into Ω_n that preserve d_χ, when the degree of χ is greater than one.

Key words. Immanants, Linear preserver problems, Doubly stochastic matrices.

AMS subject classifications. 15A69, 15A60, 15A42, 15A45, 15A04, 47B49.

1. Introduction. Let M_n denote the set of all n-by-n matrices over the complex field, \mathbb{C}. We denote by I the identity in M_n. Let S_n be the symmetric group of degree n. We denote by id the identity in S_n. Let $\chi : S_n \rightarrow \mathbb{C}$ be an irreducible character of S_n with degree greater than 1 (note that if the degree of χ is one then χ is the sign character or the principal character). The immanant d_χ is defined by

$$d_\chi(X) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^{n} X_{j\sigma(j)}, \quad X = [X_{jk}] \in M_n.$$

If the degree of the character χ is one, then d_χ is the determinant or the permanent. We denote the permanent by per,

$$per(X) = \sum_{\sigma \in S_n} \prod_{j=1}^{n} X_{j\sigma(j)}, \quad X = [X_{jk}] \in M_n.$$

Let Ω_n denote the set of all n-by-n doubly stochastic matrices, that is, matrices with nonnegative real entries and each row and column sum is one. Ω_n is a convex polyhedron in the euclidean n^2-space whose vertices are the n-by-n permutation matrices, [2].

Definition 1.1. Let T be a map from Ω_n into Ω_n. We say that T
is a semilinear map if

\[T(\lambda S_1 + (1 - \lambda)S_2) = \lambda T(S_1) + (1 - \lambda)T(S_2) \]

for all \(S_1, S_2 \in \Omega_n \) and for all real number \(\lambda \) such that \(0 \leq \lambda \leq 1 \);

- preserves \(d_\chi \) if \(d_\chi(T(S)) = d_\chi(S) \) for all \(S \in \Omega_n \).

The behavior of the permanent on \(\Omega_n \) has been studied extensively. In \([9]\), the linear maps \(T \) from \(\Omega_n \) into \(\Omega_n \) which preserve the permanent are characterized, and in \([4]\), those that verify \(T(\Omega_n) = \Omega_n \). In this paper, we characterize the semilinear surjective maps \(T \) from \(\Omega_n \) into \(\Omega_n \) that preserve \(d_\chi \), where the character \(\chi \) has degree greater than one.

Let \(\alpha = (\alpha_1, \ldots, \alpha_r) \) be a partition of \(n \) of length \(r \), that is, a sequence of positive integers which are assumed to be nonincreasing and with sum equal to \(n \). \([2][3]\). Each partition \(\alpha = (\alpha_1, \ldots, \alpha_r) \) of \(n \) is related to a Young diagram, denoted by \([\alpha]\), which consists of \(r \) left justified rows of boxes, where the number of boxes in the \(i \)th row is \(\alpha_i \). The irreducible characters of \(S_n \) are in a bijective correspondence with the ordered partitions of \(n \). \([1]\). We identify the irreducible character \(\chi \) with the partition that corresponds to \(\chi \), or with the Young diagram \([\alpha]\) associated with \(\chi \).

Denote by \(P(\sigma) \) the permutation matrix associated with \(\sigma \in S_n \), that is,

\[P(\sigma)_{ij} = \begin{cases} 1 & \text{if } i = \sigma(j), \\ 0 & \text{otherwise.} \end{cases} \]

We denote by \(S^T \) the transpose of the matrix \(S \). Recall that \((P(\sigma))^T = P(\sigma^{-1}) \).

The main result of this paper is the following theorem.

Theorem 1.2. Let \(\chi \) be an irreducible character of \(S_n \) of degree greater than one. Let \(T \) be a semilinear surjective map from \(\Omega_n \) into \(\Omega_n \). The map \(T \) preserves \(d_\chi \) if and only if there are \(\sigma, \alpha \in S_n \), with \(\chi(\sigma) = \chi(\alpha) \), such that one of the following conditions must hold:

1. \(T(S) = P(\sigma)P(\alpha)SP(\alpha^{-1}) \) for all \(S \in \Omega_n \).
2. \(T(S) = P(\sigma)P(\alpha)S^TP(\alpha^{-1}) \) for all \(S \in \Omega_n \).

Moreover, if \(\chi \neq [2, 2] \), then \(P(\sigma) = I \).

In Section 2, we shall present some preliminary definitions and propositions about the immanant of a matrix \(S \in \Omega_n \). To characterize the semilinear surjective maps \(T \) from \(\Omega_n \) into \(\Omega_n \) that preserve \(d_\chi \), we will consider several steps. So, in Section 3, we will prove that \(T \) must be injective. In Section 4, we will prove that the image by \(T \) of a permutation matrix is a permutation matrix. Finally, in Section 5, we will present the proof of the main result.

2. Preliminares. Let \(\chi \) be an irreducible character of \(S_n \). The boundary of the diagram \([\chi]\) is the set of boxes whose right edge, bottom edge, or bottom right vertex belong to the geometric boundary of the diagram. We will denote by \(p \) the number of boundary boxes of \([\chi]\). Note that if \(\chi \) is an irreducible character of \(S_n \) of degree greater than 1 then \(p \geq 3 \).

A set of successive boundary boxes whose deletion leads to another Young diagram is called a regular boundary part. The number of vertical steps of a regular boundary part is equal to the number of rows involved minus one.
The Murnaghan-Nakayama Rule is important to calculate the value of $\chi(\sigma)$, for $\sigma \in S_n$. For more details, see for example [1].

Proposition 2.1. (Murnaghan-Nakayama Rule) Let the disjoint cycles of $\sigma \in S_n$ have lengths a_1, \ldots, a_q in any order. Determine all ways in which the diagram $[\chi]$ can be reduced to 0 by successively omitting regular boundary parts of lengths a_1, \ldots, a_q. Let the boundary parts occurring in the sth way contain k_s vertical steps altogether. Then $\chi(\sigma) = \sum_s (-1)^{k_s}$.

In what follows, we will use this rule, namely, to state the following facts:

- If σ is a cycle of length equal to p then $\chi(\sigma) \neq 0$.
- If σ is a cycle of length greater than p then $\chi(\sigma) = 0$.
- If χ is a single hook, that is, an irreducible character $\chi = [\chi_1, \ldots, \chi_r]$ of S_n such that $\chi_2 = \cdots = \chi_r = 1$, and σ is the product of disjoint cycles of length greater than one, $\sigma_1, \ldots, \sigma_h$, with $h \geq 2$, and there is an integer i, such that $1 \leq i \leq h$ with the length of σ_i greater than $\max\{\chi_1 - 1, r - 1\}$ then $\chi(\sigma) = 0$.
- If χ is a single hook and σ is the product of two disjoint cycles of length greater than one, σ_1, σ_2, with the length of σ_1 equal to $\chi_1 - 1$ and the length of σ_2 equal to $r - 1$, or vice-versa, then $\chi(\sigma) \neq 0$.

In [9], M. Marcus and M. Newman proved the following result.

Proposition 2.2. If $S \in \Omega_n$, then

$$\text{per} S \leq 1.$$

Moreover, $\text{per} S = 1$ if and only if $S = P(\sigma)$, for some $\sigma \in S_n$.

If $\pi, \sigma \in S_n$, we denote by $\pi \circ \sigma$ the composition of these two permutations and we denote by $\sigma(k)$ the image of the value k under the map σ. Furthermore, if $\pi \in S_n$ is a cycle, its length is denoted by $l(\pi)$.

Remark 2.1. Let χ be an irreducible character of S_n. We refer to [10, 11, 12, 13] for a general study in multilinear algebra.

1. $\chi(\sigma) \in \mathbb{Z}$ for all $\sigma \in S_n$, and

 $$\sum_{\sigma \in S_n} \chi(\sigma) = \begin{cases} 0 & \text{if } \chi \text{ is not the principal character}, \\ n! & \text{otherwise}. \end{cases}$$

2. $\chi(\sigma^{-1}) = \chi(\sigma)$ for all $\sigma \in S_n$, and $\chi(\pi \circ \sigma \circ \pi^{-1}) = \chi(\sigma)$ for all $\pi, \sigma \in S_n$.

3. $|\chi(\sigma)| \leq |\chi(id)|$ for all $\sigma \in S_n$.

4. If $n > 4$ and χ is a character of S_n of degree greater than one, then $|\chi(\sigma)| < \chi(id)$ for all $\sigma \in S_n \setminus \{id\}$.

5. Using direct computation, if χ is a character of S_n of degree greater than one and $\sigma \in S_n \setminus \{id\}$ verify $|\chi(\sigma)| = \chi(id)$ then $n = 4, \chi = [2, 2]$ and $\sigma \in \{(12)(34), (13)(24), (14)(23)\}$. Moreover, if $\chi = [2, 2]$ and $\sigma \in \{(12)(34), (13)(24), (14)(23)\}$, then $\chi(\pi \circ \sigma) = \chi(\pi), \forall \pi \in S_4$.

From the following proposition, we can conclude that whenever $\chi \neq [2, 2]$ and $S \in \Omega_n$, the maximum value of $d_{\chi}(S)$ is attained when $S = I$, and the minimum value is attained when $S = P(\tau)$, where $\chi(\tau) \leq \chi(\pi)$, for all $\pi \in S_n$.

Proposition 2.3. Let \(\chi \) be an irreducible character of degree greater than 1 of \(S_n \). If \(S \in \Omega_n \) then \(d_\chi(S) \leq \chi(id) \), and the equality holds if and only if
\[
S = P(\sigma) \quad \text{and} \quad \chi(\sigma) = \chi(id).
\]

Moreover, \(d_\chi(S) \geq \chi(\tau) \), where \(\chi(\tau) \leq \chi(\pi) \) for all \(\pi \in S_n \), with equality if and only if
\[
S = P(\rho) \quad \text{and} \quad \chi(\rho) = \chi(\tau).
\]

Proof. Since
\[
|d_\chi(S)| = \left| \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n S_{j,\sigma(j)} \right| \leq \sum_{\sigma \in S_n} |\chi(\sigma)| \prod_{j=1}^n S_{j,\sigma(j)} \leq \sum_{\sigma \in S_n} \chi(id) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(id) \text{per} S
\]
and since \(\text{per} S \leq 1 \), it follows that \(|d_\chi(S)| \leq \chi(id) \).

If \(\chi(id) = |d_\chi(S)| \leq \chi(id) \text{per} S \), then \(\text{per} S \geq 1 \). But as \(\text{per} S \leq 1 \), for all \(S \in \Omega_n \), then \(\text{per} S = 1 \). By Proposition 2.2 we have that \(S = P(\sigma) \) for some \(\sigma \in S_n \). By definition and hypothesis, \(\chi(id) = d_\chi(S) = d_\chi(P(\sigma)) = \chi(\sigma) \). Therefore, \(\chi(\sigma) = \chi(id) \).

Since \(\chi(\tau) < 0 \) if \(\chi(\tau) = \min \{ \chi(\sigma) : \sigma \in S_n \} \), we have that
\[
d_\chi(S) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n S_{j,\sigma(j)} \geq \sum_{\sigma \in S_n} \chi(\tau) \prod_{j=1}^n S_{j,\sigma(j)} = \chi(\tau) \sum_{\sigma \in S_n} \prod_{j=1}^n S_{j,\sigma(j)} = \chi(\tau) \text{per}(S) \geq \chi(\tau).
\]

Consequently, \(d_\chi(S) \geq \chi(\tau) \). If \(d_\chi(S) = \chi(\tau) \), then \(\text{per}(S) = 1 \). By Proposition 2.2, this implies that \(S = P(\sigma) \), for some \(\sigma \in S_n \). Because \(\chi(\tau) = d_\chi(S) = d_\chi(P(\sigma)) = \chi(\sigma) \) then \(\chi(\sigma) = \chi(\tau) \).

Corollary 2.4. Let \(\chi \) be an irreducible character of degree greater than 1 of \(S_n \). Let \(T \) be a map from \(\Omega_n \) into \(\Omega_n \) that preserves \(d_\chi \). If \(\chi \neq [2, 2] \), then \(T(I) = I \). Moreover, when \(\chi = [2, 2] \), there is \(\sigma \in S_n \) such that \(T(I) = P(\sigma) \) and \(\chi(\sigma) = \chi(id) \).

Proof. Since \(T(I) \in \Omega_n \) and \(d_\chi(T(I)) = d_\chi(I) = \chi(id) \), by last proposition, there is \(\sigma \in S_n \), such that \(T(I) = P(\sigma) \), with \(\chi(\sigma) = \chi(id) \). By Remark 2.1 we have that \(T(I) = I \) if \(\chi \neq [2, 2] \).

Remark 2.2.
1. Using last corollary we conclude that \(T(I) \) is invertible.
2. Using the main result of [11] (characterization of the subgroup of \(M_n \), \(S(S_n, \chi) = \{ A \in M_n ; d_\chi(AX) = d_\chi(X) \text{, for all } X \in M_n \} \)) we have that if \(\sigma \in S_n \) and \(\chi(\sigma) = \chi(id) \), then \(d_\chi(P(\sigma)S) = d_\chi(S) \) for all \(S \in \Omega_n \).

To prove the following lemmas, we will use the Murnaghan-Nakayama Rule (see the considerations at the beginning of this section and [11]).

Lemma 2.5. Let \(n \geq 4 \), and \(\chi \) be an irreducible character of \(S_n \) of degree greater than one. If \(i, j, k \in \{ 1, \ldots, n \} \), are distinct on pairs, then there are \(\sigma, \tau \in S_n \) such that
\[
\sigma(i) = j, \quad \sigma(k) = k, \quad \tau = \sigma \circ (ik), \quad \chi(\sigma) \neq 0, \quad \chi(\tau) = 0.
\]
Proof. Suppose that χ is not a single hook, and let p be the number of boundary boxes of $[\chi]$. Then $p \leq n-1$.

If $\sigma \in S_n$ is a cycle of length p such that $\sigma(i) = j, \sigma(k) = k$, since $\tau = \sigma \circ (ik)$ then τ is a cycle of length $p+1$. Using the Murnaghan-Nakayama Rule we have that $\chi(\sigma) \neq 0$ and $\chi(\tau) = 0$.

Suppose that $\chi = [\chi_1,\ldots,\chi_{v+1}]$ is a single hook, with $\chi_1 = u > 1$ and $v \geq 1$.

If $u-1 \geq v$, since $n = u + v \geq 4$ then $u - 1 + v \geq 3$. So, (note that $v \geq 1$ because χ has degree greater than one, $n \geq 4$) $u - 1 \geq 2$. Therefore, there exist $\sigma \in S_n$, and disjoint cycles σ_1, σ_2, where $\sigma = \sigma_1 \circ \sigma_2$, $l(\sigma_1) = u - 1$ and $l(\sigma_2) = v$, such that $\sigma_1(i) = j, \sigma(k) = k$. Consequently, $\tau = \sigma \circ (ik) = \sigma_1 \circ \sigma_2$ with $\tau_1, \tau_2 \in S_n$ and $l(\tau_1) = u, l(\tau_2) = v$. Using the Murnaghan-Nakayama Rule we have that $\chi(\sigma) \neq 0$ and $\chi(\tau) = 0$.

If $u-1 < v$, then, there are $\sigma \in S_n$, disjoint cycles σ_1, σ_2, where $\sigma = \sigma_1 \circ \sigma_2$, $l(\sigma_1) = u - 1$ and $l(\sigma_2) = v$, such that $\sigma_2(i) = j$, and $\sigma(k) = k$. Therefore, $\tau = \sigma \circ (ik) = \sigma_1 \circ \sigma_2$ with $l(\tau_2) = v + 1$. Using the Murnaghan-Nakayama Rule we have that $\chi(\sigma) \neq 0$ and $\chi(\tau) = 0$. \[\Box\]

Lemma 2.6. Let $n \geq 3$, $i, j, k \in \{1, \ldots, n\}$, distinct on pairs and $\sigma, \tau \in S_n$ such that $\sigma(i) = j$, $\sigma(k) = k$, $\tau = \sigma \circ (ik)$.

Then for every $\pi \in S_n$, there are $s, l \in \{1, \ldots, n\}$ and $l \neq s$ that verify

$$\sigma^{-1}(s) \neq \pi(s), \quad \tau^{-1}(s) \neq \pi(s), \quad \sigma^{-1}(l) \neq \pi(l), \quad \tau^{-1}(l) \neq \pi(l).$$

Proof. Suppose that there is $\pi \in S_n$ with a unique $s \in \{1, \ldots, n\}$ such that $\pi(s) = t$, $\sigma(t) \neq s$, $\tau(t) \neq s$.

Consequently,

$$\text{if } l \neq s, \text{ then } \sigma^{-1}(l) = \pi(l) \text{ or } \tau^{-1}(l) = \pi(l).$$

Let u and v be elements such that $\sigma^{-1}(u) = t = \pi(s)$, $\tau^{-1}(v) = t = \pi(s)$, (note that $u \neq s$, $v \neq s$).

If $u = v$ then $\pi(u) = \sigma^{-1}(u) = t$ or $\pi(u) = \tau^{-1}(v) = t$. But $\pi(s) = t$, therefore we have a contradiction, $u = s$.

Consequently, $u \neq v$. Since $\tau = \sigma \circ (ik)$ then $(t = i, u = j, v = k)$ or $(t = k, u = k, v = j)$. We only prove the case $t = i, u = j, v = k$, because the proof of the other case is analogous. In the case that we will prove, $\sigma^{-1}(j) = i = \pi(s)$, $\tau^{-1}(k) = i = \pi(s)$.

Since $s \neq j, s \neq k$ then $\pi(j) = \sigma^{-1}(j)$ or $\pi(j) = \tau^{-1}(j)$. If $\pi(j) = \sigma^{-1}(j)$ then $\pi(j) = \sigma^{-1}(j) = \pi(s)$ and we can conclude that $s = j$ (impossible). So, $\pi(j) = \tau^{-1}(j) = k$. Since $s \neq k$ then $\pi(k) = \sigma^{-1}(k)$ or $\pi(k) = \tau^{-1}(k)$. If $\pi(k) = \tau^{-1}(k)$ then $\pi(k) = \tau^{-1}(k) = \pi(s)$ and we can conclude that $s = k$ (impossible). Therefore, $\pi(k) = \sigma^{-1}(k) = k$. But this implies that $\pi(j) = \pi(k) = k$ which is impossible. \[\Box\]
3. The injectivity of T. Let χ be an irreducible character of S_n of degree greater than 1 and T be a semilinear map from Ω_n into Ω_n that preserves d_χ. In the main result of this section we will prove that T must be injective.

Theorem 3.1. Let χ be an irreducible character of S_n of degree greater than 1 and T be a semilinear map from Ω_n into Ω_n that preserves d_χ. Then T is injective.

Proof. Let $S, S' \in \Omega_n$ such that $T(S) = T(S')$. Let $B \in \Omega_n$ and $x \in [0,1]$. Since

$$d_\chi(xS + (1-x)B) = d_\chi(T(xS + (1-x)B)) = d_\chi(T(xS + (1-x)B))$$

it follows that $d_\chi(xS + (1-x)B) = d_\chi(xS' + (1-x)B)$.

Case (i) Let $n \geq 4$. If $i, j, k \in \{1, \ldots, n\}$ are distinct on pairs, then by Lemma 2.5 there are $\sigma, \tau \in S_n$ such that $\sigma(i) = j, \sigma(k) = k, \tau = \sigma \circ (ik), \chi(\sigma) \neq 0, \chi(\tau) = 0$.

For each $b \in [0,1]$, let us consider the matrix

$$B_b = bP(\sigma) + (1-b)P(\tau).$$

So, for all $p \in \{1, \ldots, n\}$,

$$(B_b)_{p \sigma(p)} = \begin{cases} 1 & \text{if } p(p) = \sigma^{-1}(p) = \tau^{-1}(p), \\ b & \text{if } p(p) = \sigma^{-1}(p), \ p(p) \neq \tau^{-1}(p), \\ 1-b & \text{if } p(p) \neq \sigma^{-1}(p), \ p(p) = \tau^{-1}(p), \\ 0 & \text{otherwise}. \end{cases}$$

Now we will compute the coefficient of the term associated with x of the polynomial

$$d_\chi(xS + (1-x)B_b) = \sum_{\pi \in S_n} \chi(\pi) \prod_{l=1}^{n} (xS + (1-x)B_b)_{\pi(l)}. $$

If there is $s \in \{1, \ldots, n\}$ such that for some $\pi \in S_n$, $\pi(s) \neq \sigma^{-1}(s)$ and $\pi(s) \neq \tau^{-1}(s)$ then

$$(xS + (1-x)B_b)_{\pi(s)} = xS_{\pi(s)}.$$

To obtain the coefficient of the term associated with x of the polynomial $\chi(\pi) \prod_{l=1}^{n} (xS + (1-x)B_b)_{\pi(l)}$ the other terms of $\prod_{l=1, l \neq s}^{n} (xS + (1-x)B_b)_{\pi(l)}$ must verify $(B_b)_{\pi(l)} \neq 0$. Consequently, if $l \neq s$ then $\pi(l) = \sigma^{-1}(l)$ or $\pi(l) = \tau^{-1}(l)$. But this is impossible by Lemma 2.6. Therefore, if $s \in \{1, \ldots, n\}$ and $\pi \in S_n$, then $\pi(s) = \sigma^{-1}(s) \text{ or } \pi(s) = \tau^{-1}(s)$. Since $\tau = \sigma \circ (ik)$ then $\pi(s) = \sigma^{-1}(s) = \tau^{-1}(s)$, when $s \in \{1, \ldots, n\} \setminus \{j, k\}$. Because $\pi(j) = \sigma^{-1}(j)$ or $\pi(j) = \tau^{-1}(j)$, and $\pi(k) = \sigma^{-1}(k)$ or $\pi(k) = \tau^{-1}(k)$ then $\pi(j) = i$ or $\pi(j) = k$, and $\pi(k) = k$ or $\pi(k) = i$. But π is a bijection, so we have two cases:

- If $\pi(j) = i$, then $\pi(k) = k$ and $\pi = \sigma^{-1}$.
- If $\pi(j) = k$, then $\pi(k) = i$ and $\pi = \tau^{-1}$.

Therefore, the coefficient of the term associated with x of the polynomial $d_\chi(xS + (1-x)B_b)$ appears when $\pi = \sigma^{-1}$ or $\pi = \tau^{-1}$.
As \(\chi(\tau^{-1}) = 0\), it is enough to compute \(\chi(\sigma^{-1}) \prod_{l=1}^{n}(xS + (1-x)B_{b})_{l\sigma^{-1}(l)}\). Since \(\sigma^{-1}(l) = l\), for all \(l \in \{1, \ldots, n\}\) and \(\tau^{-1}(l)) \neq l\) when \(l \in \{j, k\}\), then

\[
\chi(\sigma^{-1}) \prod_{l=1}^{n}(xS + (1-x)B_{b})_{l\sigma^{-1}(l)} = \chi(\sigma^{-1})(xS_{j\sigma^{-1}(j)} + (1-x)b)(xS_{k\sigma^{-1}(k)} + (1-x)b) \prod_{l \neq j, k}(xS_{l\sigma^{-1}(l)} + (1-x)).
\]

Consequently, the coefficient of the term associated with \(x\) in the polynomial \(d_{\chi}(xS + (1-x)B_{b})\) is

\[
\chi(\sigma^{-1})(xS_{j\sigma^{-1}(j)} - b) + (xS_{k\sigma^{-1}(k)} - b) + b^2 \sum_{l \neq j, k}(S_{l\sigma^{-1}(l)} - 1)).
\]

Since \(\sigma^{-1}(j) = i\) and \(\sigma^{-1}(k) = k\) then the coefficient of the term associated with \(x\) in the polynomial \(d_{\chi}(xS + (1-x)B_{b})\) is \(\chi(\sigma^{-1})(xS_{j\sigma^{-1}(j)} - b) + (xS_{k\sigma^{-1}(k)} - b) + b^2 \sum_{l \neq j, k}(S_{l\sigma^{-1}(l)} - 1)).
\]

Using the fact that

\[
d_{\chi}(xS + (1-x)B_{b}) = d_{\chi}(xS' + (1-x)B_{b})
\]

for all \(b \in [0, 1]\), we have that

\[
\chi(\sigma^{-1})(xS_{j\sigma^{-1}(j)} - b) + (xS_{k\sigma^{-1}(k)} - b) + b^2 \sum_{l \neq j, k}(S_{l\sigma^{-1}(l)} - 1)) = \chi(\sigma^{-1})(xS'_{j\sigma^{-1}(j)} - b) + (xS'_{k\sigma^{-1}(k)} - b) + b^2 \sum_{l \neq j, k}(S'_{l\sigma^{-1}(l)} - 1)),
\]

for all \(b \in [0, 1]\). Consequently,

\[
(S_{j\sigma^{-1}(j)} + S_{k\sigma^{-1}(k)})b + b^2 \left(\sum_{l \neq j, k}(S_{l\sigma^{-1}(l)} - 1)) - 2 \right) = (S'_{j\sigma^{-1}(j)} + S'_{k\sigma^{-1}(k)})b + b^2 \left(\sum_{l \neq j, k}(S'_{l\sigma^{-1}(l)} - 1)) - 2 \right)
\]

for all \(b \in [0, 1]\).

Then the coefficient of the term associated with \(b\) of the last polynomials are equal, i.e.,

\[
S_{j\sigma^{-1}(j)} + S_{k\sigma^{-1}(k)} = S'_{j\sigma^{-1}(j)} + S'_{k\sigma^{-1}(k)}
\]

(3.1) for all \(i, j, k \in \{1, \ldots, n\}\), distinct on pairs. Since \(n \geq 4\), there is \(p \notin \{i, j, k\}\) such that

\[
S_{j\sigma^{-1}(j)} + S'_{p\sigma^{-1}(p)} = S'_{j\sigma^{-1}(j)} + S'_{p\sigma^{-1}(p)},
\]

(3.2)

and subtracting the equalities (3.1) and (3.2), we obtain that

\[
S_{k\sigma^{-1}(k)} - S'_{k\sigma^{-1}(k)} = S_{p\sigma^{-1}(p)} - S'_{p\sigma^{-1}(p)}
\]

for all \(k, p \in \{1, \ldots, n\}\).

If \(c\) is the constant defined by \(c = S_{k\sigma^{-1}(k)} - S'_{k\sigma^{-1}(k)}\), then \(S_{k\sigma^{-1}(k)} = S'_{k\sigma^{-1}(k)} + c\), and by (3.1), we obtain \(S_{j\sigma^{-1}(j)} = S'_{j\sigma^{-1}(j)} - c\), for all \(i, j \in \{1, \ldots, n\}, i \neq j\).

As \(S, S' \in \Omega_n\), we have \(S_{jj} + \sum_{j=1,j \neq i}^{n}S_{ji} = 1\) and \(S'_{jj} + c + \sum_{j=1,j \neq i}^{n}(S'_{ji} - c) = 1\), which implies that \(\sum_{j=1}^{n}S'_{jj} + (2-n)c = 1\). Since \(n \neq 2\) then \(c = 0\), which means that \(S_{kk} = S'_{kk}\) and \(S_{ji} = S'_{ji}\), for all \(k, i, j \in \{1, \ldots, n\}\). Therefore, \(S = S'\), and \(T\) is injective.
Case (ii) Let \(n = 3 \) and \(\chi = [2,1] \). Let us consider \(\sigma = (ij) \) and \(\tau = (ijk) \) for \(\{i, j, k\} = \{1, 2, 3\} \). Then \(\chi(\sigma) = 0 \) and \(\chi(\tau) \neq 0 \). For each \(b \in [0, 1] \), consider the matrix \(B_b = bP(\sigma) + (1 - b)P(\tau) \). So, for all \(p \in \{1,2,3\} \) and \(\pi \in S_3 \),

\[
(B_b)_{\pi x(p)} = \begin{cases}
1 & \text{if } \pi(p) = \sigma^{-1}(p) = \tau^{-1}(p), \\
\begin{array}{c}
b \quad \text{if } \pi(p) = \sigma^{-1}(p), \ \pi(p) \neq \tau^{-1}(p), \\
1-b & \text{if } \pi(p) \neq \sigma^{-1}(p), \ \pi(p) = \tau^{-1}(p), \\
0 & \text{otherwise.}
\end{array}
\end{cases}
\]

Then

\[
d_\chi(xS + (1-x)B_b) = \sum_{\pi \in S_3} \chi(\pi) \prod_{i=1}^{3} (xS + (1-x)B_b)_{\pi x(i)} \\
= \chi(\tau)(xS_{\tau(i)} + (1 - x)b)(xS_{\tau(j)})(xS_{\tau(k)}) + \chi(\tau^{-1})(xS_{\tau^{-1}(i)} + (1 - x)(1 - b)) \\
\cdot (xS_{\tau^{-1}(j)} + (1 - x))(xS_{\tau^{-1}(k)} + (1 - x)(1 - b)) + \chi(id)(xS_{ii})(xS_{jj})(xS_{kk} + (1 - x)b).
\]

Since \(\tau^{-1}(i) = k, \tau^{-1}(j) = i \) and \(\tau^{-1}(k) = j \), the coefficient of the term associated with \(x \) of the polynomial \(d_\chi(xS + (1-x)B_b) \) is \(\chi(\tau^{-1})(1 - b)((S_{ik} + S_{ji} + S_{kj} - 3) + b(-S_{ji} + 3)) \) for all \(b \in [0, 1] \).

Using the fact that

\[
d_\chi(xS + (1-x)B_b) = d_\chi(xS' + (1-x)B_b),
\]

we have that

\[
\chi(\tau^{-1})(1 - b)((S_{ij} + S_{ji} + S_{kj} - 3) + b(-S_{ji} + 3)) = \chi(\tau^{-1})(1 - b)((S'_{ij} + S'_{ji} + S'_{kj} - 3) + b(-S'_{ji} + 3))
\]

for all \(b \in [0, 1] \). So, the coefficient of the term associated with \(b^2 \) of last polynomials are equal and this implies that

\[
S_{ji} = S'_{ji}
\]

for all \(i \neq j \). Since \(S_{ii} + S_{ji} + S_{ki} = 1 = S'_{ii} + S'_{ji} + S'_{ki} \), then \(S_{ii} = S'_{ii} \), for all \(i \in \{1,2,3\} \). Consequently, \(S = S' \). So, \(T \) is injective. \(\square \)

4. The image of a permutation matrix by \(T \). Let \(C \subseteq \Omega_n \) be a convex polyhedron. An element \(S \in C \) is a vertex of \(C \), if \(S \) satisfies:

\[
\forall S_1, S_2 \in C : \ S = \alpha S_1 + (1 - \alpha) S_2, \ \text{with } \alpha \in [0, 1[, \ \text{it follows } S_1 = S_2 = S.
\]

Let \(T \) be a semilinear map from \(\Omega_n \) into \(\Omega_n \) that preserves \(d_\chi \). Since \(\Omega_n \) and \(T(\Omega_n) \) are convex polyhedrons, and the permutation matrices are the vertices of \(\Omega_n \) (see [2]), in the next step we will see that if \(\sigma \in S_n \), then \(T(P(\sigma)) \) is a vertex of \(T(\Omega_n) \).

Proposition 4.1. Let \(\chi \) be an irreducible character of degree greater than 1 of \(S_n \). Let \(T \) be a semilinear map from \(\Omega_n \) into \(\Omega_n \) that preserves \(d_\chi \). If \(\sigma \in S_n \), then \(T(P(\sigma)) \) is a vertex of the convex polyhedron \(T(\Omega_n) \).

Proof. Let \(S_1, S_2 \in \Omega_n \) and \(\sigma \in S_n \) such that \(T(P(\sigma)) = \alpha T(S_1) + (1 - \alpha) T(S_2) \), for some \(\alpha \in [0, 1[. \) Then by semilinearity of \(T \) we have \(T(P(\sigma)) = T(\alpha S_1 + (1 - \alpha) S_2) \). Using Theorem 3.1, \(P(\sigma) = \alpha S_1 + (1 - \alpha) S_2, \)
with $\alpha \in [0, 1]$. As $P(\sigma)$ is a vertex of Ω_n, then $S_1 = S_2 = P(\sigma)$, which means that $T(S_1) = T(S_2) = T(P(\sigma))$, and $T(P(\sigma))$ is a vertex of $T(\Omega_n)$. \square

In what follows, we consider that the semilinear map T from Ω_n into Ω_n is surjective. Since T preserves d_χ, we have that T is bijective and $T(\Omega_n) = \Omega_n$.

Corollary 4.2. Let χ be an irreducible character of degree greater than 1 of S_n. Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_χ. Then for each $\sigma \in S_n$ there is a $\pi \in S_n$ such that $T(P(\sigma)) = P(\pi)$, where $\chi(\sigma) = \chi(\pi)$.

Definition 4.3. We say that two matrices S_1 and S_2 are equal to one in the position (i, j), if $(S_1)_{ij} = (S_2)_{ij} = 1$.

We denote by $c[S_1, S_2]$ the number of positions where S_1 and S_2 are equal to one. Consequently, if P is a permutation matrix and $S \in \Omega_n$, then $c[P, S]$ is equal to the number of ones of the matrix $xP + (1 - x)S$, for all $x \in [0, 1]$. In particular $c[I, S]$ is equal to the number of ones in the main diagonal of S.

Proposition 4.4. Let χ be an irreducible character of degree greater than 1 of S_n. Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_χ. Let $\sigma \in S_n$ such that $\chi(\sigma) \neq 0$ and $S \in \Omega_n$. If $T(P(\sigma)) = P(\pi)$ and $T(S) = S'$, then

$$\sum_{j=1}^{n} S_{j\sigma^{-1}(j)} = \sum_{j=1}^{n} S'_{j\pi^{-1}(j)}.$$

Proof. Let $x \in [0, 1]$. First we will compute the coefficient of the term associated with x of the polynomial $d_\chi(xS + (1 - x)P(\sigma)) = \sum_{\tau \in S_n} \chi(\tau) \prod_{j=1}^{n} (xS + (1 - x)P(\sigma))_{\tau(j)}$. If $\tau \neq \sigma^{-1}$, then there is $s \in \{1, \ldots, n\}$ such that $(xS + (1 - x)P(\sigma))_{\tau(s)} = xS_{\sigma(\tau(s))}$. Since τ and σ are bijections, there are, at least two integers $s, h \in \{1, \ldots, n\}$ with $s \neq h$ and $(xS + (1 - x)P(\sigma))_{\tau(s)} = xS_{\sigma(\tau(s))}$, $(xS + (1 - x)P(\sigma))_{\tau(h)} = xS_{\sigma(\tau(h))}$. Consequently, $\prod_{j=1}^{n} (xS + (1 - x)P(\sigma))_{\tau(j)}$ is a polynomial with the coefficient associated with x equal to zero. So, the coefficient of the term associated with x of the polynomial $d_\chi(xS + (1 - x)P(\sigma))$ is obtained when $\tau = \sigma^{-1}$ and is equal to

$$\chi(\sigma^{-1}) \sum_{j=1}^{n} (S_{j\sigma^{-1}(j)} - 1).$$

As $d_\chi(xS + (1 - x)P(\sigma)) = d_\chi(xS' + (1 - x)P(\pi))$ we have that

$$\chi(\sigma^{-1}) \sum_{j=1}^{n} (S'_{j\sigma^{-1}(j)} - 1) = \chi(\pi^{-1}) \sum_{j=1}^{n} (S_{j\sigma^{-1}(j)} - 1).$$

Consequently, we get the desired conclusion using Corollary 4.2 and the fact that $\chi(\sigma) \neq 0$. \square

Corollary 4.5. Let χ be an irreducible character of degree greater than 1 of S_n. Let T be a semilinear surjective map from Ω_n into Ω_n that preserves d_χ. Let $\sigma \in S_n$ such that $\chi(\sigma) \neq 0$ and $\rho \in S_n$. If $T(P(\sigma)) = P(\pi)$, then

$$c[P(\sigma), P(\rho)] = c[P(\pi), T(P(\rho))].$$
Semilinear Preservers of the Immanants in the Set of Doubly Stochastic Matrices

Proof. By Proposition 4.4

\[\sum_{j=1}^{n} P(\rho)_{j\sigma^{-1}(j)} = \sum_{j=1}^{n} T(P(\rho))_{j\sigma^{-1}(j)}. \]

So we get the desired conclusion. \(\square \)

Lemma 4.6. Let \(\chi \) be an irreducible character of degree greater than 1 of \(S_n \). Let \(T \) be a semilinear surjective map from \(\Omega_n \) into \(\Omega_n \) that preserves \(d_\chi \). Let \(\rho, \theta \in S_n \) such that \(T(P(\rho)) = P(\theta) \). If \(\rho \) is a transposition then \(\theta \) is a transposition, and if \(\rho \) is a cycle of length three then \(\theta \) is a cycle of length three.

Proof. Let \(\rho \) be a cycle of length \(2 \leq l \leq 3 \), such that \(T(P(\rho)) = P(\theta) \), then by Corollary 4.5

\[c[I, P(\rho)] = n - l = c[I, P(\theta)]. \]

If \(l = 2 \), then there are \(i, j \in \{1, \ldots, n\} \) such that \(i \neq j \), \(P(\theta)_{ii} = P(\theta)_{jj} = 0 \), \(P(\theta)_{kk} = 1 \), for all \(k \neq i, j \), and consequently, \(P(\theta)_{ij} = P(\theta)_{ji} = 1 \).

The case \(l = 3 \) can be proved using the same arguments. \(\square \)

A semilinear map \(T \) is called unital if \(T(I) = I \). When \(T \) is a semilinear map from \(\Omega_n \) into \(\Omega_n \) the case of a nonunital map can be reduced to the unital case by considering the semilinear map \(\Phi \) defined by \(\Phi(S) = T(I)^{-1}T(S) \), since \(T(I) \) is invertible. Recall that by Corollary 2.4 if the irreducible character of degree greater than one, \(\chi \), verifies \(\chi \neq [2, 2] \) and \(T \) preserves \(d_\chi \) then \(T(I) = I \).

Proposition 4.7. Let \(\chi \) be an irreducible character of degree greater than 1 of \(S_n \). Let \(T \) be a semilinear unital surjective map from \(\Omega_n \) into \(\Omega_n \) that preserves \(d_\chi \). Then there is \(\alpha \in S_n \) such that for all \(i, j \in \{1, \ldots, n\}, i \neq j \),

\[T(P(ij)) = P(\alpha(i)\alpha(j)). \]

Proof. First we will prove two claims.

If \(X \) is a set, we denote by \(|X|\) the cardinality of \(X \).

Claim 1. Let \(i, j, l, a, e, c, d \in \{1, \ldots, n\} \) with \(i, j, l \) distinct on pairs. If \(T(P(ij)) = P(\alpha e) \) and \(T(P(il)) = P(\alpha d) \) then \(|\{a, e, c, d\}| = 3\).

Proof of Claim 1. Using Lemma 4.6 since \(T \) is injective, \(|\{a, e, c, d\}| \neq 2\).

Suppose that \(|\{a, e, c, d\}| = 4\), which does not happen if \(n = 3 \). Let \(S = bP(ij) + (1 - b)P(il) \), with \(b \in [0, 1] \). Since, \(T(S) = bP(\alpha e) + (1 - b)P(\alpha d) \), where \(b \in [0, 1] \), and \(d_\chi(xS + (1 - x)I) = d_\chi(xT(S) + (1 - x)I) \), then the coefficient of the term associated with \(x^2b^2 \) of both polynomials must be equal.

First we will compute the term associated with \(x^2b^2 \) of the polynomial

\[d_\chi(xS + (1 - x)I) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^{n} (xS + (1 - x)I)_{s\pi(s)}. \]
Therefore, the coefficient of the term associated with

When \(\pi \in S_n \),

\[
(S)_{s\pi(s)} = (bP(ij) + (1 - b)P(il))_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{i, j, l\}, \quad \pi(s) = s, \\
b & \text{if } (s, \pi(s)) \in \{(l, l), (i, j), (j, i)\}, \\
1 - b & \text{if } (s, \pi(s)) \in \{(l, i), (i, l), (j, j)\}, \\
0 & \text{otherwise}.
\end{cases}
\]

Consequently, when \(\pi \in S_n \),

\[
(xS + (1 - x)I)_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{i, j, l\}, \quad \pi(s) = s, \\
1 - x & \text{if } (s, \pi(s)) = (i, i), \\
1 - xb & \text{if } (s, \pi(s)) = (j, j), \\
1 - x(1 - b) & \text{if } (s, \pi(s)) = (l, l), \\
xb & \text{if } (s, \pi(s)) \in \{(i, j), (j, i)\}, \\
x(1 - b) & \text{if } (s, \pi(s)) \in \{(i, i), (i, l)\}, \\
0 & \text{otherwise}.
\end{cases}
\]

So, if \(\pi \notin \{id, (ij), (il)\} \) and there is \(h \in \{1, \ldots, n\} \setminus \{i, j, l\} \) with \(\pi(h) \neq h \) then \((xS + (1 - x)I)_{h\pi(h)} = 0 \) and \(\chi(\pi) \prod_{s=1}^n (xS + (1 - x)I)_{s\pi(s)} = 0 \). Consequently, if \(\chi(\pi) \prod_{s=1}^n (xS + (1 - x)I)_{s\pi(s)} \neq 0 \) then \(\pi(h) = h \), for all \(h \in \{1, \ldots, n\} \setminus \{i, j, l\} \) and \(\pi \in \{id, (ij), (il), (jl), (ijl)\} \).

If \(\pi = (jl) \) or \(\pi = (ijl) \) then \((xS + (1 - x)I)_{j\pi(j)} = 0 \) and \(\chi(\pi) \prod_{s=1}^n (xS + (1 - x)I)_{s\pi(s)} = 0 \).

If \(\pi = (ilj) \) then \((xS + (1 - x)I)_{j\pi(l)} = 0 \) and \(\chi(\pi) \prod_{s=1}^n (xS + (1 - x)I)_{s\pi(s)} = 0 \).

So, \(d(xS + (1 - x)I) = \chi(id)(1 - x(1 - b))(xb)(xb) + \chi(id)(1 - x(1 - b))(1 - xb)(1 - x) + \chi(id)(1 - xb)(x(1 - b))^2 \).

Therefore, the coefficient of the term associated with \(x^2b^2 \) of the polynomial \(d(xS + (1 - x)I) \) is

\[-\chi(id) + \chi(ij) + \chi(id).\]

Now we will compute the term associated with \(x^2b^2 \) of the polynomial

\[d(\chi(xT(S) + (1 - x)I)) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^n (xT(S) + (1 - x)I)_{s\pi(s)}.\]

When \(\pi \in S_n \),

\[
(T(S))_{s\pi(s)} = (bP(ae) + (1 - b)P(cd))_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{a, e, c, d\}, \quad \pi(s) = s, \\
b & \text{if } (s, \pi(s)) \in \{(a, c), (e, a), (c, c), (d, d)\}, \\
1 - b & \text{if } (s, \pi(s)) \in \{(c, d), (d, c), (a, a), (e, e)\}, \\
0 & \text{otherwise}.
\end{cases}
\]

Consequently, when \(\pi \in S_n \),

\[
(xT(S) + (1 - x)I)_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{a, e, c, d\}, \quad \pi(s) = s, \\
1 - xb & \text{if } (s, \pi(s)) \in \{(a, a), (a, e)\}, \\
1 - x(1 - b) & \text{if } (s, \pi(s)) \in \{(d, d), (c, c)\}, \\
xb & \text{if } (s, \pi(s)) \in \{(a, e), (e, a)\}, \\
x(1 - b) & \text{if } (s, \pi(s)) \in \{(c, d), (d, c)\}, \\
0 & \text{otherwise}.
\end{cases}
\]
Semilinear Preservers of the Immanants in the Set of Doubly Stochastic Matrices

So, if \(\pi \not\in \{id, (ae), (cd)\} \) and there is \(h \in \{1, \ldots, n\} \setminus \{a, e, c, d\} \) with \(\pi(h) \neq h \) then \((xT(S) + (1-x)I)_{h\pi(h)} = 0 \) and \(\chi(\pi) \prod_{s=1}^{n} (xT(S) + (1-x)I)_{s\pi(s)} = 0 \). Consequently, if \(\chi(\pi) \prod_{s=1}^{n} (xT(S) + (1-x)I)_{s\pi(s)} \neq 0 \) then \(\pi(h) = h \), for all \(h \in \{1, \ldots, n\} \setminus \{a, e, c, d\} \).

If \(\pi(r) \in \{\pi(a), \pi(c)\} \subseteq \{c, d\} \) or \(\pi(r) \in \{\pi(e), \pi(d)\} \subseteq \{a, e\} \), then \((xT(S) + (1-x)I)_{r\pi(r)} = 0 \) and \(\chi(\pi) \prod_{s=1}^{n} (xT(S) + (1-x)I)_{s\pi(s)} = 0 \).

So, \(d_{\chi}(xT(S) + (1-x)I) = \chi(ae)(1-x(1-b))^{2}(xb)^{2} + \chi(id)(1-x(1-b))^{2}(1-xb)^{2} + \chi(cd)(1-xb)^{2}(1-b)^{2} \). Therefore, the coefficient of the term associated with \(x^{2}b^{2} \) of the polynomial \(d_{\chi}(xT(S) + (1-x)I) \) is

\[
-2\chi(id) + \chi(ae) + \chi(cd).
\]

Since the polynomials \(d_{\chi}(xS + (1-x)I) \) and \(d_{\chi}(xT(S) + (1-x)I) \) are equal then the coefficients of the term associated with \(x^{2}b^{2} \) of each polynomial are equal, i.e.,

\[
-\chi(id) + \chi(ij) + \chi(il) = -2\chi(id) + \chi(ae) + \chi(cd).
\]

Because \(\chi(id) \neq 0 \), we obtain a contradiction. Consequently, \(|\{a, e, c, d\}| = 3\). \(\blacksquare \)

Claim 2. Let \(i, j, l, a, e, d \in \{1, \ldots, n\} \) with \(i, j, l \) distinct on pairs and \(a, e, d \) distinct on pairs. If \(T(P(ij)) = P(\{ae\}) \) and \(T(P(il)) = P(ad) \), then

\[
T(P(jl)) = P(ed).
\]

Proof of Claim 2. If \(T(P(jl)) = P(gf) \), using Claim 1, we conclude that \(|\{a, e, g, f\}| = 3 \) and \(|\{a, d, g, f\}| = 3\).

Let us assume that \(g = a \). Then \(f \neq a, f \neq e \) and \(f \neq d \), and consequently \(|\{a, e, d, f\}| = 4\).

Let \(S = b_{1}P(ij) + b_{2}P(il) + (1 - (b_{1} + b_{2}))P(jl) \), with \(b_{1}, b_{2} \in [0,1] \) and \(b_{1} + b_{2} \leq 1 \). Since, \(d_{\chi}(xS + (1-x)I) = d_{\chi}(xT(S) + (1-x)I) \), then the coefficient of the term associated with \(x^{2}b_{1}b_{2} \) of both polynomials must be equal.

First we will compute the term associated with \(x^{4}b_{1}b_{2} \) of the polynomial

\[
d_{\chi}(xS + (1-x)I) = \sum_{\pi \in S_{n}} \chi(\pi) \prod_{s=1}^{n} (xS + (1-x)I)_{s\pi(s)}.
\]

When \(\pi \in S_{n} \),

\[
(S)_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{i, j, l\}, \quad \pi(s) = s, \\
b_{1} & \text{if } (s, \pi(s)) \in \{(l, i), (i, j), (j, i)\}, \\
b_{2} & \text{if } (s, \pi(s)) \in \{(j, l), (i, l), (l, i)\}, \\
1 - (b_{1} + b_{2}) & \text{if } (s, \pi(s)) \in \{(i, i), (j, l), (l, j)\}, \\
0 & \text{otherwise}.
\end{cases}
\]
Consequently, when $\pi \in S_n$,

\[
(xS + (1 - x)I)_{x\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{i, j, l\}, \quad \pi(s) = s, \\
1 - x(b_1 + b_2) & \text{if } (s, \pi(s)) = (i, i), \\
1 - x(1 - b_2) & \text{if } (s, \pi(s)) = (j, i), \\
1 - x(1 - b_1) & \text{if } (s, \pi(s)) = (l, i), \\
x b_1 & \text{if } (s, \pi(s)) \in \{(i, j), (j, i)\}, \\
x b_2 & \text{if } (s, \pi(s)) \in \{(i, l), (l, i)\}, \\
x(1 - (b_1 + b_2)) & \text{if } (s, \pi(s)) \in \{(l, j), (j, l)\}, \\
0 & \text{otherwise.}
\end{cases}
\]

So, if $\pi \in S_n$ and there is $h \in \{1, \ldots, n\} \setminus \{i, j, l\}$ with $\pi(h) \neq h$ then $(xS + (1 - x)I)_{h\pi(h)} = 0$ and $\chi(\pi) \prod_{s=1}^{n} (xS + (1 - x)I)_{h\pi(s)} = 0$. If $\pi \in S_n$ and for all $h \in \{1, \ldots, n\} \setminus \{i, j, l\}$, $\pi(h) = h$ then $(xS + (1 - x)I)_{h\pi(h)} = 1$. Consequently, the degree of the polynomial $d_\chi(xS + (1 - x)I)$ is less than or equal to three. Therefore, the coefficient of the term associated with $x^4b_1b_2$ of the polynomial $d_\chi(xS + (1 - x)I)$ is zero.

Now we will compute the term associated with $x^4b_1b_2$ of the polynomial $d_\chi(xT(S) + (1 - x)I) = \sum_{\pi \in S_n} \chi(\pi) \prod_{s=1}^{n} (xT(S) + (1 - x)I)_{s\pi(s)}$. When $\pi \in S_n$,

\[
(T(S))_{s\pi(s)} = (b_1P(ae) + b_2P(ad) + (1 - (b_1 + b_2))P(af))_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{a, c, d\}, \quad \pi(s) = s, \\
b_1 & \text{if } (s, \pi(s)) \in \{(a, e), (e, a)\}, \\
b_2 & \text{if } (s, \pi(s)) \in \{(a, d), (d, a)\}, \\
1 - (b_1 + b_2) & \text{if } (s, \pi(s)) \in \{(a, f), (f, a)\}, \\
1 - b_1 & \text{if } (s, \pi(s)) = (e, c), \\
1 - b_2 & \text{if } (s, \pi(s)) = (d, a), \\
b_1 + b_2 & \text{if } (s, \pi(s)) = (f, f), \\
0 & \text{otherwise.}
\end{cases}
\]

Consequently, when $\pi \in S_n$,

\[
(xT(S) + (1 - x)I)_{s\pi(s)} = \begin{cases}
1 & \text{if } s \in \{1, \ldots, n\} \setminus \{a, c, d\}, \quad \pi(s) = s, \\
x b_1 & \text{if } (s, \pi(s)) \in \{(a, e), (e, a)\}, \\
x b_2 & \text{if } (s, \pi(s)) \in \{(a, d), (d, a)\}, \\
x(1 - (b_1 + b_2)) & \text{if } (s, \pi(s)) \in \{(a, f), (f, a)\}, \\
1 - x b_1 & \text{if } (s, \pi(s)) = (e, c), \\
1 - x b_2 & \text{if } (s, \pi(s)) = (d, a), \\
1 - x(1 - (b_1 + b_2)) & \text{if } (s, \pi(s)) = (f, f), \\
1 - x & \text{if } (s, \pi(s)) = (a, a), \\
0 & \text{otherwise.}
\end{cases}
\]

If $\pi \notin \{(a, e), (a, f), (a, d), (d, a)\}$ then there is $h \in \{1, \ldots, n\}$ with $\pi(h) \notin \{h, (a, e), (a, f), (a, d), (d, a)\}$. Consequently, $(xT(S) + (1 - x)I)_{h\pi(h)} = 0$. Then $\chi(\pi) \prod_{h=1}^{n} (xT(S) + (1 - x)I)_{h\pi(h)} = 0$. So, $d_\chi(xT(S) + (1 - x)I) = \chi(id)(1 - x b_1)(1 - x b_2)(1 - x(1 - (b_1 + b_2)) + \chi(af)(x b_1)^2(1 - x b_2)(1 - x(1 - (b_1 + b_2))) + \chi(af)(x b_2)^2(1 - x b_1)(1 - x(1 - (b_1 + b_2))) + \chi(af)x(1 - (b_1 + b_2))^2(1 - x b_1)(1 - x b_2) = \chi(id)(1 - x(b_1 + b_2) + 1 + x^2(b_1 + b_2 + b_1 b_2) - x^3 b_1 b_2)(1 - x(1 - (b_1 + b_2))) + \cdots + \chi(af)x(1 - 2 b_1 - 2 b_2 + b_1^2 + b_2^2 + 2 b_1 b_2)(1 - x(b_1 + b_2) + x^2 b_1 b_2).$
Then the coefficient of the polynomial \(d_\chi(xT(S) + (1 - x)I) \) associated with \(x^4b_1b_2 \) is \(\chi(id) + \chi(af) \).

Since \(d_\chi(xS + (1 - x)I) = d_\chi(xT(S) + (1 - x)I) \), then the coefficient of the term associated with \(x^4b_1b_2 \) of both polynomials must be equal, i.e.,

\[
0 = \chi(id) + \chi(af).
\]

But this is impossible by Remark 2.1 when \(\chi \neq [2, 2] \), and because \(\chi(id) = 2 \), \(\chi(af) = 0 \), when \(\chi = [2, 2] \). Thus, \(g \neq a \), and using the same argument, we have that \(f \neq a \). Therefore, \(g = e \), so \(f = d \) since \(\{|a, d, g, f\}| = 3 \), and we conclude that \(T(P(jl)) = P(ed) \).

For all \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) let us consider \(k \in \{1, \ldots, n\} \), such that \(k \neq i, k \neq j \). Let us assume that \(\{i, j, k\} = \{1, 2, 3\} \).

Using Lemma 4.6 there are \(j_1, j_2, j_3, j_4 \in \{1, \ldots, n\} \) such that \(T(P(12)) = P(j_1j_2), T(P(13)) = P(j_3j_4) \). By Claim 1 \(|\{j_1, j_2, j_3, j_4\}| = 3 \). Let \(\alpha(1) = i_1 \) where \(i_1 \in \{j_1, j_2\} \cap \{j_3, j_4\} \). Let \(\alpha(2) = i_2 \), where \(i_2 \in \{j_1, j_2\} \setminus \{i_1\} \), and \(\alpha(3) = i_3 \), where \(i_3 \in \{j_3, j_4\} \setminus \{i_1\} \).

Using this construction, we can define a function

\[
\alpha: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\},
\]

where \(\alpha(r) = i_r \).

Using Claim 2 and the injectivity of \(T \), we conclude that \(\alpha \in S_n \). □

5. Proof of the main result. Let \(\chi \) be an irreducible character of degree greater than 1 of \(S_n \). In this section, we characterize the semilinear surjective maps \(T \) from \(\Omega_n \) into \(\Omega \) that preserve \(d_\chi \) (Theorem 1.2).

By the Murnaghan-Nakayama Rule (mentioned in Section 2), if \(\chi \) is an irreducible character of \(S_n \) and \(p \) is the number of boundary boxes of the Young Diagram associated with \(\chi \), then \(\chi(\xi) \neq 0 \) whenever \(\xi \) is a cycle of length \(p \). On what follows we consider \(\alpha \in S_n \) obtained using Proposition 4.7.

Proposition 5.1. Let \(\chi \) be an irreducible character of \(S_n \) of degree greater than one and \(p \) be the number of boundary boxes of the Young Diagram associated with \(\chi \). Let \(T \) be a semilinear unital surjective map from \(\Omega_n \) into \(\Omega_n \) that preserves \(d_\chi \). Let \(\xi \in S_n \) be a cycle of length \(p \) and \(T(P(\xi)) = P(\rho) \). Then

\[
\rho = \alpha \circ \xi \circ \alpha^{-1}
\]

or

\[
\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}.
\]

Proof. Let \(\xi = (i_1i_2 \cdots i_p) \). Then, by Corollary 4.5 \(c[I, P(\xi)] = c[I, P(\rho)] = n - p \). Let \(S = P(i_1i_2) \). Then

\[
S' = T(S) = T(P(i_1i_2)) = P(\alpha(i_1)\alpha(i_2))
\]

and, by Corollary 4.5

\[
c[P(\xi), P(i_1i_2)] = n - p + 1 = c[P(\rho), P(\alpha(i_1)\alpha(i_2))],
\]
i.e., $\rho^{-1}(\alpha(i_1)) = \alpha(i_2)$, or $\rho^{-1}(\alpha(i_2)) = \alpha(i_1)$, and both cases cannot happen at the same time because ρ is not a transposition.

Repeating the same argument with $S = P(i_t i_{t+1})$, where $t \in \{2, \ldots, p-1\}$, and using the bijectivity of ρ and α, we must have

1) $\rho^{-1}(\alpha(i_1)) = \alpha(i_2)$, $\rho^{-1}(\alpha(i_2)) = \alpha(i_3)$, \ldots, $\rho^{-1}(\alpha(i_p)) = \alpha(i_1)$, or

2) $\rho^{-1}(\alpha(i_1)) = \alpha(i_p)$, $\rho^{-1}(\alpha(i_p)) = \alpha(i_{p-1})$, \ldots, $\rho^{-1}(\alpha(i_2)) = \alpha(i_1)$.

So by definition of ξ we have that

1) $\alpha^{-1} \circ \rho^{-1} \circ \alpha = \xi^{-1}$, or

2) $\alpha^{-1} \circ \rho^{-1} \circ \alpha = \xi$.

Then $\rho = \alpha \circ \xi \circ \alpha^{-1}$ or $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$. \Box

In Proposition 5.2 we will prove that if $\beta, \gamma \in S_n$ are cycles of length p, then we cannot have $T(P(\beta)) = P(\alpha \circ \beta \circ \alpha^{-1})$, and $T(P(\gamma)) = P(\alpha \circ \gamma^{-1} \circ \alpha^{-1})$.

Proposition 5.2. Let χ be an irreducible character of S_n of degree greater than one and p be the number of boundary boxes of the Young Diagram associated with χ. Let T be a semilinear unital surjective map from Ω_n into Ω_n that preserves d_{χ}. Suppose that if $p = 4$ then $n \neq p$. Let $\xi \in S_n$ be a cycle of length p and $T(P(\xi)) = P(\rho)$.

1) If $\rho = \alpha \circ \xi \circ \alpha^{-1}$ then $T(P(\theta)) = P(\alpha \circ \theta \circ \alpha^{-1})$ whenever $\theta \in S_n$ is a cycle of length p.

2) If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$ then $T(P(\theta)) = P(\alpha \circ \theta^{-1} \circ \alpha^{-1})$ whenever $\theta \in S_n$ is a cycle of length p.

Proof. We will prove part 1). The proof will be divided into two cases:

Case 1. Let $p \neq n$.

Claim 1. If $i, j \in \{1, \ldots, n\}$ with $i \neq j$, verify $\xi(i) = i$ and $\xi(j) \neq j$ then $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$.

Proof of Claim 1. Since $(ij) \circ \xi \circ (ij)$ is a cycle of length p, by Proposition 5.1, $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$ or $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi^{-1} \circ (ij) \circ \alpha^{-1})$. Suppose that $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi^{-1} \circ (ij) \circ \alpha^{-1})$.

Let $S = P((ij) \circ \xi \circ (ij))$. By Proposition 4.4 $S_{1\xi^{-1}(1)} + \cdots + S_{n\xi^{-1}(n)} = S'_{1\rho^{-1}(1)} + \cdots + S'_{n\rho^{-1}(n)}$, where $S' = T(S)$. Since

\[S_{1\xi^{-1}(1)} + \cdots + S_{n\xi^{-1}(n)} = |\{(a : (ij) \circ \xi^{-1}(a) = \xi^{-1} \circ (ij)(a)\}| = n - 3 \]

and

\[S'_{1\rho^{-1}(1)} + \cdots + S'_{n\rho^{-1}(n)} = |\{(a : (ij) \circ \xi^{-1}(a) = \xi \circ (ij)(a)\}| = n - p - 1, \]

then $p = 2$ (impossible). So $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$. \blacksquare

Let $\theta = (a \theta(a) \cdots \theta^{p-1}(a))$ be a cycle of length p, $\theta \neq \xi$, where $a \in \{1, \ldots, n\}$ and

\[\theta^l(a) = \begin{cases} a & \text{if } l = 0, \\ \theta(\theta^{-1}(a)) & \text{if } l > 0. \end{cases} \]
If $\xi(a) = a$, let t be an integer such that $\xi(t) \neq t$. Using Claim 1,
\[TP((at) \circ \xi \circ (at)) = P(a \circ (at) \circ \xi \circ (at) \circ a^{-1}) \]
and if $\beta = (at) \circ \xi \circ (at)$ then β is a cycle of length p verifying $\beta(a) \neq a$. So, we can assume that $\xi(a) \neq a$.

Let s be the smallest positive integer that $\theta^s(a) \neq \theta^{s-1}(a)$. Consequently, $s < p$ and $\theta^u(a) = \xi^u(a)$, for $u = 0, \ldots, s - 1$.

- If $\xi(\theta^s(a)) = \theta^s(a)$, let $\xi(\theta^{s-1}(a)) = r$ (note that we have $\xi(\theta^{s-1}(a)) \neq \theta^{s-1}(a)$ because $\xi(\theta^{s-1}(a)) = \theta^{s-1}(a)$ implies that $\xi(a) = a$). Using Claim 1,
\[TP((\theta^s(a)r) \circ \xi \circ (\theta^s(a)r)) = P(a \circ (\theta^s(a)r) \circ \xi \circ (\theta^s(a)r) \circ a^{-1}) \]
and if $\beta_1 = (\theta^s(a)r) \circ \xi \circ (\theta^s(a)r)$ then β_1 is a cycle of length p verifying $\beta_1^u(a) = \theta^u(a)$, for $u = 0, \ldots, s$.

- If $\xi(\theta^s(a)) \neq \theta^s(a)$, let $\xi(\theta^{s-1}(a)) = r$. Since $n \neq p$, let k be an integer such that $\xi(k) = k$. Using Claim 1,
\[TP((\theta^s(a)k) \circ \xi \circ (\theta^s(a)k)) = P(a \circ (\theta^s(a)k) \circ \xi \circ (\theta^s(a)k) \circ a^{-1}) \]
and if $\beta_2 = (\theta^s(a)k) \circ \xi \circ (\theta^s(a)k)$ then β_2 is a cycle of length p verifying $\beta_2^u(a) = \theta^u(a)$, for $u = 0, \ldots, s - 1$, $\beta_2(\theta^s(a)) = \theta^s(a)$ and $\beta_2(\theta^{s-1}(a)) = r$. Using what we proved above, we conclude that there is a cycle of length p, β_3, such that $\beta_3^u(a) = \theta^u(a)$, for $u = 0, \ldots, s$ and $TP(\beta_3) = P(\alpha\beta_3\alpha^{-1})$.

Repeating this argument, we prove the result.

Case 2. Let $n = p \neq 4$.

Claim 2. If $i, j \in \{1, \ldots, n\}$, with $i \neq j$, verify $\xi(i) = j$, then $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$.

Proof of Claim 2. Using a similar argument as in Claim 1, suppose that $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi^{-1} \circ (ij) \circ \alpha^{-1})$.

Let $S = P((ij) \circ \xi \circ (ij))$. By Proposition 4.14, $S_{1\xi^{-1}(1)} + \cdots + S_{n\xi^{-1}(n)} = S'_{1p^{-1}(1)} + \cdots + S'_{np^{-1}(n)}$, where $S' = T(S)$. Since
\[S_{1\xi^{-1}(1)} + \cdots + S_{n\xi^{-1}(n)} = \{|a : (ij) \circ \xi^{-1}(a) = \xi^{-1}(ij)(a)| = n - 3 \}
and
\[S'_{1p^{-1}(1)} + \cdots + S'_{np^{-1}(n)} = \{|a : (ij) \circ \xi^{-1}(a) = \xi(ij)(a)| = n, \text{ if } p = 3 \}
or
\[S'_{1p^{-1}(1)} + \cdots + S'_{np^{-1}(n)} = \{|a : (ij) \circ \xi^{-1}(a) = \xi(ij)(a)| = n - p + 1, \text{ if } p > 3 \}
then $p = 4$ (impossible). So $T(P((ij) \circ \xi \circ (ij))) = P(\alpha \circ (ij) \circ \xi \circ (ij) \circ \alpha^{-1})$.

Let $\theta = (a \theta(a) \cdots \theta^{p-1}(a))$ be a cycle of length p, $\theta \neq \xi$, where $a \in \{1, \ldots, n\}$ and
\[\theta^l(a) = \begin{cases} a & \text{if } l = 0, \\ \theta(\theta^{l-1}(a)) & \text{if } l > 0. \end{cases} \]
Since $n = p$ then $\xi(a) \neq a$. Let s be the smallest positive integer that $\theta^s(a) \neq \xi(\theta^{s-1}(a))$. Consequently, $s < p - 1$ and $\theta^s(a) = \xi^u(a)$, for $u = 0, \ldots, s - 1$. Since $n = p$, there is an integer k such that $p - 1 \geq k > s$ and $\xi^k(a) = \theta^u(a)$. Using Claim 2,

$$TP((\xi^k(a)\xi^{k-1}(a)) \circ \xi \circ (\xi^k(a)\xi^{k-1}(a))) = P(\alpha \circ (\xi^k(a)\xi^{k-1}(a)) \circ \xi \circ (\xi^k(a)\xi^{k-1}(a)) \circ \alpha^{-1}),$$

and if $\beta_4 = (\xi^k(a)\xi^{k-1}(a)) \circ \xi \circ (\xi^k(a)\xi^{k-1}(a))$, then β_4 is a cycle of length p verifying $\beta_4^u(a) = \theta^u(a)$, for $u = 0, \ldots, s - 1$ and $\beta_4^{k-1}(a) = \xi^k(a) = \theta^u(a)$. Using this argument we obtain a cycle of length p, β_5, such that $\beta_5^u(a) = \theta^u(a)$, for $u = 0, \ldots, s$ and $TP(\beta_5) = P(\alpha \beta_5 \alpha^{-1})$.

Repeating this argument, we prove the result.

The proof of part 2) is analogous. \Box

For each $i, j \in \{1, \ldots, n\}$ let $U_{i,j}$ be the subset of Ω_n such that

$$U_{i,j} = \{P \in \Omega_n : P \text{ is a permutation matrix and } P_{i,j} = 1\}.$$

These sets are very important for our study.

Proposition 5.3. Let χ be an irreducible character of S_n of degree greater than one, χ, and p be the number of boundary boxes of the Young Diagram associated with χ. Let T be a unital semilinear surjective map from Ω_n into Ω_n that preserves d_χ. Let $i, j \in \{1, \ldots, n\}$ where $i \neq j$, and P be a permutation matrix, such that $P \in U_{i,j}$. Assume that ξ is a cycle of length p, and $T(P(\xi)) = P(\rho)$. Then one of the following conditions must hold:

1. If $\rho = \alpha \circ \xi \circ \alpha^{-1}$, then $T(P) \in U_{\alpha(i),\alpha(j)}$.
2. If $\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$, then $T(P) \in U_{\alpha(j),\alpha(i)}$.

Proof. We will prove (1). Let $\pi \in S_n$ such that $\pi(j) = i$. Therefore, $P(\pi) \neq I$ and $P(\pi) \in U_{i,j}$. By hypothesis, $\rho = \alpha \circ \xi \circ \alpha^{-1}$. We will see that $T(P(\pi)) \in U_{\alpha(i),\alpha(j)}$. Let $P(\theta) = T(P(\pi))$. We shall consider several cases:

Case 1. Let $n \geq 5$. If $n \geq 5$, and the number of boundary boxes of the Young diagram associated with χ is p, then $p \geq 4$. Suppose that $T(P(\pi)) = P(\theta) \notin U_{\alpha(i),\alpha(j)}$, i.e.,

$$\alpha^{-1} \circ \theta \circ \alpha(j) \neq i$$

Let $\theta' = \alpha^{-1} \circ \theta \circ \alpha$, then by Corollary 4.5

$$c[P(\zeta), P(\pi)] = c[T(P(\zeta)), P(\theta)],$$

whenever ζ is a cycle of length p.

Since $n \geq 5$, we can choose $a \in \{1, \ldots, n\}$ such that

$$a \neq i, \; a \neq j, \; \pi(a) \neq j,$$

and we can choose $b \in \{1, \ldots, n\}$ such that

$$b \neq i, \; b \neq j, \; b \neq a, \; \theta'(a) \neq b, \; \text{and} \; \theta'(b) \neq j.$$
Let us consider the cycles ξ_1 and η of length p, defined by

$$\xi_1(a) = b, \quad \xi_1(b) = j, \quad \xi_1(j) = i, \quad \eta(a) = j, \quad \eta(j) = b, \quad \eta(b) = i,$$

and $\xi_1(q) = \eta(q)$ for all $q \notin \{a, b, j\}$.

Since $\xi_1(j) = \pi(j)$ and $\eta(q) \neq \pi(q)$ for all $q \in \{a, b, j\}$, then

$$c[P(\xi_1), P(\pi)] > c[P(\eta), P(\pi)],$$

which implies that

$$c[T(P(\xi_1)), P(\theta)] > c[T(P(\eta)), P(\theta)].$$

By Proposition 5.2 we have

$$c[P(\alpha \circ \xi_1 \circ \alpha^{-1}), P(\theta)] > c[P(\alpha \circ \eta \circ \alpha^{-1}), P(\theta)].$$

Since $\xi_1(q) \neq \theta'(q)$ for all $q \in \{a, b, j\}$, then

$$c[P(\alpha \circ \xi_1 \circ \alpha^{-1}), P(\theta)] \leq c[P(\alpha \circ \eta \circ \alpha^{-1}), P(\theta)],$$

which is a contradiction. So $T(P(\pi)) \in U_{\alpha(j), \alpha(j)}$.

Case 2. Let $n = 3$ and $\chi = [2, 1]$. Since $p = 3$, if π is a cycle of length 3, then the result is obtained using Proposition 5.2. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Case 3. Let $n = 4$ and $\chi = [3, 1]$ or $\chi = [2, 1, 1]$. In this case, we can not use Proposition 5.2 since the number of boundary boxes of the Young Diagram associated with χ is $p = 4$. If π is a cycle of length 2, then the result is obtained using Proposition 4.7.

Let $\pi = (ij) \circ (kl)$ with i, j, k, l distinct on pairs, then by Corollary 4.5 (in this case, if σ is a transposition then $\chi(\sigma) = 1$ or -1),

$$c[P(ij), P(\pi)] = 2 = c[P(\alpha(i)\alpha(j)), T(P(\pi))].$$

Since $c[I, P(\pi)] = 0$ then $c[I, T(P(\pi))] = 0$. So, $\theta(\alpha(i)) = \alpha(j)$ and $\theta(\alpha(j)) = \alpha(i)$. Therefore, $P(\theta) \in T_{\alpha(j), \alpha(j)}$.

Let i, j, k distinct on pairs. If $\pi = (ijk)$, using Lemma 4.6, $T(P(ijk)) = P(abc)$, where a, b, c are distinct on pairs. Since $\chi(ij) \neq 0$ (in this case, $\chi(ij) = 1$ or $\chi(ij) = -1$), by Corollary 4.5 we have

$$c[P(ij), P(\pi)] = 2 = c[P(\alpha(i)\alpha(j)), T(P(\pi))].$$

Since $c[I, P(\pi)] = 1$ then $c[I, T(P(\pi))] = 1$. So,

$$(abc)(\alpha(i)) = \alpha(j) \quad \text{or} \quad (abc)(\alpha(j)) = \alpha(i),$$

(only one of these conditions because (abc) is not a transposition).

In the same way, using the transposition (ik),

$$(abc)(\alpha(i)) = \alpha(k) \quad \text{or} \quad (abc)(\alpha(k)) = \alpha(i)$$

and using the transposition (kj),

$$(abc)(\alpha(k)) = \alpha(j) \quad \text{or} \quad (abc)(\alpha(j)) = \alpha(k).$$
Consequently,

\[(abc) = (\alpha(i)\alpha(j)\alpha(k)) \quad \text{or} \quad (abc) = (\alpha(j)\alpha(i)\alpha(k)).\]

Since \(\chi\) is a cycle of length 4, then \(\chi\) is one of the following permutations

\[(jikl) \quad \text{or} \quad (jik) \quad \text{or} \quad (jlik) \quad \text{(5.1)}\]

or

\[(jiki) \quad \text{or} \quad (jikl) \quad \text{or} \quad (jikli), \quad \text{(5.2)}\]

with \(l \in \{1, 2, 3, 4\} \setminus \{j, i, k\}\).

If \(\chi\) is equal to a permutation of \(\{5.2\}\), then \(c[P(\chi), P(\pi)] = 0\). Using Corollary \(4.5\) (recall that \(\chi(\chi) \neq 0\)), \(c[P(\alpha \circ \chi \circ \alpha^{-1}), P(abc)] = 0\). Since \(\alpha \circ \chi \circ \alpha^{-1}(\alpha(i)) = \alpha(j)\) or \(\alpha \circ \chi \circ \alpha^{-1}(\alpha(j)) = \alpha(k)\), we conclude that \((abc) = (\alpha(j)\alpha(i)\alpha(k))\).

If \(\chi\) is equal to a permutation of \(\{5.1\}\), then \(c[P(\chi), P(\pi)] = 2\). Using Corollary \(4.5\) \(c[P(\alpha \circ \chi \circ \alpha^{-1}), P(abc)] = 2\). Since \((abc)(\alpha(l)) = \alpha(l)\), we conclude that \((abc) = (\alpha(j)\alpha(i)\alpha(k))\). Therefore, \(P(\theta) = T(P(jik)) = P(\alpha(j)\alpha(i)\alpha(k)) \in U_{\alpha(i),\alpha(j)}\).

If \(\pi = (jikl)\) is a cycle of length 4, with \(i, j, k, l\) distinct on pairs, then \(c[I, P(\pi)] = 0 = c[I, P(\theta)]\). Considering the transposition \((ij)\) and using Corollary \(4.5\) we get \(c[P(ij), P(\pi)] = 1 = c[P(\alpha \circ (ij) \circ \alpha^{-1}), P(\theta)]\). Then

\[\theta(\alpha(i)) = \alpha(i) \quad \text{or} \quad \theta(\alpha(i)) = \alpha(j).\]

Suppose that \(\theta(\alpha(i)) = \alpha(j)\). Considering the permutation \((jik)\) and using Corollary \(4.5\) we get \(c[P(jik), P(\pi)] = 2 = c[P(\alpha \circ (jik) \circ \alpha^{-1}), P(\theta)]\). Then

\[\theta(\alpha(i)) = \alpha(k) \quad \text{and} \quad \theta(\alpha(k)) = \alpha(j).\]

So, \(\alpha(k) = \theta(\alpha(i)) = \alpha(j)\). Impossible because \(\theta\) is a permutation. Consequently, \(\theta(\alpha(j)) = \alpha(i)\) and \(P(\theta) = T(P(jikl)) \in U_{\alpha(i),\alpha(j)}\).

Case 4. Let \(n = 4\) and \(\chi = [2, 2]\). Since \(p = 3\), if \(\pi\) is a cycle of length 3, then the result is obtained using Proposition \(5.2\). If \(\pi\) is a cycle of length 2, then the result is obtained using Proposition \(4.7\).

Let \(i, j, k, l\) distinct on pairs. Let \(\pi = (ij) \circ (kl)\) then

\[c[P(ij), P(\pi)] = 2 = c[P(\alpha(i)\alpha(j)), T(P(\pi))]\]

(in this case, \(\chi((ij) \circ (kl)) = 2 \neq 0\)). Since \(c[I, P(\pi)] = 0\) then \(c[I, T(P(\pi))] = 0\). So, \(\theta(\alpha(i)) = \alpha(j)\) and \(\theta(\alpha(j)) = \alpha(i)\). Therefore, \(P(\theta) \in U_{\alpha(i),\alpha(j)}\).

Let \(\pi = (jikl)\) with \(i, j, k, l\) distinct on pairs, then

\[c[P(jik), P(\pi)] = 2 = c[P(\alpha(j)\alpha(i)\alpha(k)), T(P(\pi))]\]

(in this case, \(\chi(jikl) = -1 \neq 0\)). Since \(c[I, P(\pi)] = 0\) then \(c[I, T(P(\pi))] = 0\). So, we must have two of these cases, \(\theta(\alpha(j)) = \alpha(i)\) or \(\theta(\alpha(i)) = \alpha(k)\) or \(\theta(\alpha(k)) = \alpha(j)\). (recall that \(P(\theta) = T(P(\pi))\)). In the
Semilinear Preservers of the Immanants in the Set of Doubly Stochastic Matrices

same way, using \((jil)\) we must have two of these cases, \(\theta(\alpha(i)) = \alpha(l)\) or \(\theta(\alpha(l)) = \alpha(j)\) or \(\theta(\alpha(j)) = \alpha(i)\). If \(\theta(\alpha(j)) \neq \alpha(i)\) then \(\theta(\alpha(i)) = \alpha(k)\), \(\theta(\alpha(k)) = \alpha(j)\) and \(\theta(\alpha(i)) = \alpha(l)\). Impossible because \(\theta\) is a permutation. Consequently, \(\theta(\alpha(j)) = \alpha(i)\).

Therefore, \(P(\theta) = T(P(ijkl)) \in U_{\alpha(i), \alpha(j)}\).

The proof of part 2) is analogous. □

Now we are in conditions to prove the main result of this paper.

\[\text{Proof of Theorem 1.2.}\] If there are \(\sigma, \alpha \in S_n\), with \(\chi(\sigma) = \chi(id)\), such that
\[T(S) = P(\sigma)P(\alpha)SP(\alpha^{-1}),\]
for all \(S \in \Omega_n\), we have that
\[d_\chi(T(S)) = \sum_{\pi \in S_n} \chi(\pi) \prod_{j=1}^{n} T(S)_{j\pi(j)} = \sum_{\rho \in S_n} \chi(\rho \circ \alpha^{-1} \circ \sigma^{-1}) \prod_{j=1}^{n} S_{j\rho(j)}.\]

Since \(\chi(\sigma) = \chi(id)\) then \(\chi(\rho \circ \alpha^{-1} \circ \sigma^{-1}) = \chi(\rho \circ \alpha^{-1}) = \chi(\rho)\) (see Remark 2.1). Consequently, \(d_\chi(T(S)) = \sum_{\rho \in S_n} \chi(\rho) \prod_{j=1}^{n} S_{j\rho(j)} = d_\chi(S)\). Therefore, the map \(T\) preserves \(d_\chi\).

The proof of the case when \(T(S) = P(\sigma)P(\alpha)STP(\alpha^{-1})\) is similar.

Conversely, suppose that the map \(T\) preserves \(d_\chi\) and is unital.

Let \(p\) be the number of boundary boxes of the Young Diagram associated with \(\chi\) and let \(\alpha \in S_n\) obtained using Proposition 4.7

\[\text{Claim 1.}\] Let \(P\) be a permutation matrix, such that \(P \in U_{ii}\). Then \(T(P) \in U_{\alpha(i), \alpha(i)}\).

\[\text{Proof of Claim 1.}\] Suppose that \(P = P(\pi)\) with \(\pi \in S_n\). Let \(k = c[P, I]\). By Corollary 4.5 \(k = c[T(P), I]\). Let \(i_1, \ldots, i_{n-k}\) be distinct on pairs, such that \(\pi(i_j) \neq i_j\), for all \(j \in \{1, \ldots, n-k\}\).

Assume that \(\xi\) is a cycle of length \(p\), \(T(P(\xi)) = P(\rho)\), with \(\rho = \alpha \circ \xi \circ \alpha^{-1}\) (condition 1) of Proposition 5.3. Since \(P \in U_{\pi(i_j)j}\), then \(T(P) \in U_{\alpha(\pi(i_j))\alpha(i_j)}\), for all \(j \in \{1, \ldots, n-k\}\). As \(k = c[T(P), I]\), then \(T(P) \in U_{rr},\) where \(r \in \{1, \ldots, n\} \\setminus \{\alpha(i_1), \ldots, \alpha(i_{n-k})\}\).

Let us consider \(p_k\), for all \(t \in \{1, \ldots, k\}\), such that \(\alpha(p_k) = r_t\), then \(p_1, \ldots, p_k \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_{n-k}\}\). Since \(P \in U_{i_t}\) then \(\pi(i) = i_t\) and there exists \(p_j \in \{p_1, \ldots, p_k\}\) such that \(p_j = i_t\). Since \(\alpha(i) = \alpha(p_j) = r_j\) then \(T(P) \in U_{\alpha(\alpha(i))\alpha(i)}\).

If we are in the condition 2) of Proposition 5.3 the proof is analogous. □

\[\text{Claim 2.}\] Assume that \(\xi\) is a cycle of length \(p\), and \(T(P(\xi)) = P(\rho)\). Then one of the following conditions must hold:

1. If \(\rho = \alpha \circ \xi \circ \alpha^{-1}\), then \(T(U_{i,j}) = U_{\alpha(i), \alpha(j)}, \forall i, j\).
2. If \(\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}\), then \(T(U_{i,j}) = U_{\alpha(j), \alpha(i)}, \forall i, j\).

\[\text{Proof of Claim 2.}\] By Propositions 5.3 and Claim 1, we know that

1. If \(\rho = \alpha \circ \xi \circ \alpha^{-1}\), then \(T(U_{i,j}) \subseteq U_{\alpha(i), \alpha(j)}, \forall i, j\);
2. If \(\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}\), then \(T(U_{i,j}) \subseteq U_{\alpha(j), \alpha(i)}, \forall i, j\).
Since

$$\varphi : U_{i,j} \rightarrow U_{k,l}$$

$$P \mapsto P(ik)PP(jl)$$

is a bijective map, then

$$|U_{i,j}| = |U_{k,l}|, \ \forall i,j,k,l.$$ So,

1. if $$\rho = \alpha \circ \xi \circ \alpha^{-1}$$, then $$T(U_{i,j}) = U_{\alpha(i),\alpha(j)}$$, $$\forall i,j$$;
2. if $$\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$$, then $$T(U_{i,j}) = U_{\alpha(j),\alpha(i)}$$, $$\forall i,j$$.

Claim 3. Assume that $$\xi$$ is a cycle of length $$p$$, and $$T(P(\xi)) = P(\rho)$$. Then one of the following conditions must hold:

1. if $$\rho = \alpha \circ \xi \circ \alpha^{-1}$$, then $$T(A) = P(\alpha)AP(\alpha^{-1})$$, for all $$A \in \Omega_n$$.
2. if $$\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$$, then $$T(A) = P(\alpha)A^TP(\alpha^{-1})$$, for all $$A \in \Omega_n$$.

Proof of Claim 3. Since there exist $$\sigma_1, \ldots, \sigma_t \in S_n$$ and $$\lambda_1, \ldots, \lambda_t \in [0,1]$$ with $$\lambda_1 + \cdots + \lambda_t = 1$$ such that $$A = \lambda_1 P(\sigma_1) + \cdots + \lambda_t P(\sigma_t)$$ then

1. if $$\rho = \alpha \circ \xi \circ \alpha^{-1}$$, by Claim 2,

$$T(A) = T(\lambda_1 P(\sigma_1) + \cdots + \lambda_t P(\sigma_t)) = \lambda_1 T(P(\sigma_1)) + \cdots + \lambda_t T(P(\sigma_t))$$

$$= \lambda_1 P(\alpha \circ \sigma_1 \circ \alpha^{-1}) + \cdots + \lambda_t P(\alpha \circ \sigma_t \circ \alpha^{-1})$$

$$= P(\alpha)(\lambda_1 P(\sigma_1) + \cdots + \lambda_t P(\sigma_t))P(\alpha^{-1})$$

$$= P(\alpha)AP(\alpha^{-1}).$$

2. If $$\rho = \alpha \circ \xi^{-1} \circ \alpha^{-1}$$, by Claim 2,

$$T(A) = T(\lambda_1 P(\sigma_1) + \cdots + \lambda_t P(\sigma_t)) = \lambda_1 T(P(\sigma_1)) + \cdots + \lambda_t T(P(\sigma_t))$$

$$= \lambda_1 P(\alpha \circ \sigma_1^{-1} \circ \alpha^{-1}) + \cdots + \lambda_t P(\alpha \circ \sigma_t^{-1} \circ \alpha^{-1})$$

$$= P(\alpha)(\lambda_1 P(\sigma_1^{-1}) + \cdots + \lambda_t P(\sigma_t^{-1}))P(\alpha^{-1})$$

$$= P(\alpha)A^TP(\alpha^{-1}).$$

Using Corollary 2.4 we have that if $$\chi \neq [2,2]$$, then $$T(I) = I$$. By Claim 3 and Corollary 4.2, the map $$T$$ must have one of the forms (1) or (2).

If the map $$T$$ is nonunital, then $$T(I) \neq I$$, and in this case, by Corollary 2.4 we must have $$\chi = [2,2]$$. Since $$T(I) = P(\sigma)$$ with $$\chi(\sigma) = \chi(id)$$, we can consider the semilinear map $$\Phi$$ defined by $$\Phi(S) = T(I)^{-1}T(S)$$, since $$T(I)$$ is invertible. The map $$\Phi$$ is unital, and

$$d_\chi(\Phi(S)) = d_\chi(T(I)^{-1}T(S)) = d_\chi(P(\sigma^{-1})T(S)).$$
Semilinear Preservers of the Immanants in the Set of Doubly Stochastic Matrices

Using Remark 2.1 and

\[d_\chi(P(\sigma^{-1})T(S)) = \sum_{\rho \in S_4} \chi(\rho) \prod_{j=1}^{4} (P(\sigma^{-1})T(S))_{j\rho(j)} = \sum_{\pi \in S_4} \chi(\pi \circ \sigma) \prod_{j=1}^{4} (T(S))_{j\pi(j)} \]

\[= \sum_{\pi \in S_4} \chi(\pi) \prod_{j=1}^{4} (T(S))_{j\pi(j)} = d_\chi(T(S)) = d_\chi(S), \]

we conclude that \(\Phi \) preserves \(d_\chi \).

By Claim 3 and Corollary 4.2 the result follows.

Acknowledgments. We are indebted to a referee for many useful comments and suggestions.

REFERENCES