EVENTUAL CONE INVARIANCE*

MICHAEL KASIGWA† AND MICHAEL J. TSATSOMEROS†

Abstract. Eventually nonnegative matrices are square matrices whose powers become and remain (entrywise) nonnegative. Using classical Perron-Frobenius theory for cone preserving maps, this notion is generalized to matrices whose powers eventually leave a proper cone $K \subset \mathbb{R}^n$ invariant, that is, $A^m K \subseteq K$ for all sufficiently large m. Also studied are the related notions of eventual cone invariance by the matrix exponential, as well as other generalizations of M-matrix and dynamical system notions.

Key words. Eventually nonnegative matrix, Exponentially nonnegative matrix, Perron-Frobenius, Proper cone.

AMS subject classifications. 15A48, 93B03.

*Received by the editors on January 31, 2017. Accepted for publication on July 5, 2017. Handling Editor: Daniel Szyld.
†Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164-3113, USA (kasigwa@wsu.edu, tsat@wsu.edu).