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ON SKEW-SYMMETRIC MATRICES RELATED TO

THE VECTOR CROSS PRODUCT IN R7 ∗

PATRÍCIA D. BEITES† , ALEJANDRO P. NICOLÁS‡ , AND JOSÉ VITÓRIA§

Abstract. A study of real skew-symmetric matrices of orders 7 and 8, defined through the vector cross product in

R7, is presented. More concretely, results on matrix properties, eigenvalues, (generalized) inverses and rotation matrices are

established.

Key words. Vector cross product, Skew-symmetric matrix, Matrix properties, Eigenvalues, (Generalized) Inverses,

Rotation matrices.
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1. Introduction. Let F be a field of characteristic different from 2. An algebra A over F is a com-

position algebra if it is endowed with a nondegenerate quadratic form (the norm) n : A → F which is

multiplicative, i.e., for any x, y ∈ A,

n(xy) = n(x)n(y).

The form n being nondegenerate means that n(x, y) = 1
2 (n(x+ y)− n(x)− n(y)), the associated symmetric

bilinear form, is nondegenerate.

A classical result known as the generalized Hurwitz Theorem asserts that, over F , if A is a finite

dimensional composition algebra with identity, then its dimension is equal to 1, 2, 4 or 8. Furthermore, A is

isomorphic either to the base field, a separable quadratic extension of the base field, a generalized quaternion

algebra or a generalized octonion algebra, [8].

A consequence of the cited theorem is that the values of n for which the Euclidean spaces Rn can be

equipped with a binary vector cross product, satisfying the same requirements as the usual one in R3, are

restricted to 1 (trivial case), 3 and 7. A complete account on the existence of r-fold vector cross products

for d-dimensional vector spaces, where they are used to construct exceptional Lie superalgebras, is in [4].

The interest in octonions, seemingly forgotten for some time, resurged in the recent decades, not only

for their intrinsic mathematical relevance but also because of their applications, as well as those of the vector

cross product in R7. This product was used for the implementation of the seven-dimensional vector analysis

method in [15], to estimate the amount of abnormalities in algorithms that provide accurate feedback in

rehabilitation.
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Moreover, as mentioned in [9], the octonions play an important role in Physics. Namely, they led up to

the theory of fundamental particles known as eightfold way. More recently, in [11], it was shown that if the

fundamental particles, the fermions, are assumed to have seven time-spatial dimensions, then the so called

hierarchy problem, concerning the unknown reason for the weak force to be stronger than the gravity force,

could be solved.

In this work, we extend the results, devoted to the vector cross product in R3 and real skew-symmetric

matrices of order 4, in [17]. Concretely, we study real skew-symmetric matrices of orders 7 and 8 defined

through the vector cross product in R7. These are denoted, for any a, b ∈ R7, by Sa and Ma,b, respectively.

The latter matrices, called hypercomplex in [9], can be used to write the coordinate matrix of the

left multiplication by an octonion. The particular case b = a leads to Ma,a, an orthogonal design which,

according to [14] and references therein, can be used in the construction of space time block codes for wireless

transmissions. Furthermore, if b = a =
[

1 1 1 1 1 1 1
]T

, then I8 + Ma,a is a Hadamard matrix

of skew-symmetric type.

For completeness, in Section 2, we recall some definitions and results related to the binary vector cross

product in R7, inverses and skew-symmetric matrices. Throughout the work, for simplicity, we omit the

word binary.

In Section 3, we approach the vector cross product in R7 from a matrix point of view. For this purpose,

we consider the matrices Sa and establish some related properties.

Section 4 is devoted to the eigenvalues of Sa and Ma,b. We obtain the characteristic polynomials of these

matrices, using adequate Schur complements in the latter case.

In Section 5, we deduce either the inverse or the Moore-Penrose inverse of Ma,b, depending on its

determinant. The Moore-Penrose inverse of Sa is presented in Section 3.

We dedicate Section 6, the last of this work, to the generation of rotation matrices from the Cayley

transforms and the exponentials of the skew-symmetric matrices Sa and Ma,b.

2. Preliminaries. Throughout this work, Rm×n denotes the set of all m×n real matrices. With n = 1,

we identify Rm×1 with Rm. With m = n = 1, we identify R1×1 with R.

Consider the usual real vector space R8, with canonical basis {e0, . . . , e7}, equipped with the multipli-

cation ∗ given by ei ∗ ei = −e0 for i ∈ {1, . . . , 7}, being e0 the identity, and the below Fano plane, where the

cyclic ordering of each three elements lying on the same line is shown by the arrows.

e6

e3

e1

e4

e5

e7

e2

Figure 1. Fano plane for O.
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Then O = (R8, ∗) is the real (non-split) octonion algebra. Every element x ∈ O may be represented by

x = x0 + x, where x0 ∈ R and x =

7∑
i=1

xiei ∈ R7,

are, respectively, the real part and the pure part of the octonion x.

The multiplication ∗ can be written in terms of the Euclidean inner product and the vector cross product

in R7, hereinafter denoted by 〈·, ·〉 and ×, respectively. Concretely, as in [9], we have

x ∗ y = x0y0 − 〈x, y〉+ x0y + y0x+ x× y.

A formula for the double vector cross product in R7 is

x× (y × z) = 〈x, z〉y − 〈x, y〉z +
1

3
J(x, y, z),

[10]. Here J stands for the Jacobian, the alternate application defined by

J(x, y, z) = x× (y × z) + y × (z × x) + z × (x× y).

For (R3,×), a Lie algebra, the well known formula for the double vector cross product in R3 arises since, for

any x, y, z ∈ R3, J(x, y, z) = 0.

Let A ∈ Rm×n.

A matrix A− ∈ Rn×m is a generalized inverse of A if AA−A = A.

The Moore-Penrose inverse of A, as defined in [1], is the unique matrix A† ∈ Rn×m satisfying

AA†A = A, A†AA† = A†, (A†A)T = A†A and (AA†)T = AA†.

In particular, if u is a nonzero vector in Rm×1, then its Moore-Penrose inverse is given by

u† =
uT

||u||2
,

where, hereinafter, || · || denotes the Euclidean norm.

In the remaining part of this section, assume that m = n.

The matrix A is a rotation matrix if A is orthogonal (ATA = I) and detA = 1.

From now on, assume also that A is a skew-symmetric matrix. Hence, according to a classical result on

skew-symmetric matrices, the eigenvalues of A are purely imaginary or null.

Due to the skew-symmetry of A, In +A is invertible. The Cayley transform of A is the matrix given by

C(A) = (In +A)−1(In−A). It is well known that C(A) is a rotation matrix and, as In−A = 2In− (In +A),

C(A) = 2(In +A)−1 − In.

This is one of the Cayley formulas in [6], that allow to establish a one-to-one correspondence between the

skew-symmetric matrices and the orthogonal matrices that do not have the eigenvalue −1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 32, pp. 138-150, May 2017.
http://repository.uwyo.edu/ela

141 On Skew-Symmetric Matrices Related to the Vector Cross Product in R7

As it is known, R = eA is the rotation matrix, called exponential of A, defined by the absolute convergent

power series

eA =

∞∑
k=0

Ak

k!
.

Conversely, given a rotation matrix R ∈ SO(n), there exists a skew-symmetric matrix A such that R = eA,

[6]. The combination of these two facts is equivalent to saying that the map exp : so(n)→ SO(n), from the

Lie algebra so(n) of skew-symmetric n× n matrices to the Lie group SO(n), is surjective, [2].

3. Matrix properties of Sa. In the present section, following [9] and [10], we consider a matrix

representation of the Maltsev algebra (R7,×) in terms of particular cases of hypercomplex matrices. If

a ∈ R7, then let Sa be the matrix in R7×7 defined by

Sax = a× x

for any x ∈ R7. Hence, for a =
[
a1 a2 a3 a4 a5 a6 a7

]T
, Sa is the skew-symmetric matrix

0 −a3 a2 −a5 a4 −a7 a6
a3 0 −a1 −a6 a7 a4 −a5
−a2 a1 0 a7 a6 −a5 −a4
a5 a6 −a7 0 −a1 −a2 a3
−a4 −a7 −a6 a1 0 a3 a2
a7 −a4 a5 a2 −a3 0 −a1
−a6 a5 a4 −a3 −a2 a1 0


.

We now establish some properties related to Sa.

Proposition 3.1. Let a, c ∈ R7 and α, γ ∈ R. Then

1) Sαa+γc = αSa + γSc;

2) Sac = −Sca;
3) Sa is singular;

4) S2
a = aaT − aTaI7;

5) S3
a = −aTaSa;

6) S†a =

{
0 if a = 0

− 1
aT a

Sa if a 6= 0
;

7) SSab = 3
2 (baT − abT )− 1

2 [Sa, Sb], where [·, ·] denotes the matrix commutator.

Proof. Properties 1) and 2) are direct consequences of the bilinearity and of the skew-symmetry of ×.

As far as 3), on the one hand, if a = 0 then Sa = 0, being Sa singular. On the other hand, if a 6= 0 then,

from 2), we have Saa = 0. If Sa was invertible then a = 0, a contradiction.

Regarding 4), for any x ∈ R7, we have

SaSax = a× (a× x) = 〈a, x〉a− 〈a, a〉x = (aaT )x− (aTa)x = (aaT − aTaI7)x.

Concerning 5), note that aaTSa = −a(Saa)T = 0 by 2). Hence, by 4), S3
a = S2

aSa = −aTaSa.
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To obtain 6), since the case a = 0 is trivial, assume that a 6= 0. By 5),

Sa

(
− 1

aTa
Sa

)
Sa = − 1

aTa
S3
a = Sa.

Taking into account the skew-symmetry of Sa,(
Sa
−1

aTa
Sa

)T
= − 1

aTa
STa S

T
a = Sa

−1

aTa
Sa.

The remaining equalities of the Moore-Penrose inverse definition can be proved in a similar way.

By 2), for any x ∈ R7, we get

SSabx = −SxSab = −x× (a× b) = −〈x, b〉a+ 〈x, a〉b− 1

3
J(x, a, b).

As J(x, a, b) = x× (a× b) + a× (b× x) + b× (x× a) = −Sa×bx+ [Sa, Sb]x, then we obtain

SSabx =

(
baT − abT +

1

3
SSab −

1

3
[Sa, Sb]

)
x,

and 7) follows.

Remark 3.2. The problem of finding the Moore-Penrose inverse of an order 7 skew-symmetric matrix

was proposed by Groß, Troschke and Trenkler in [7]. The ensuing solutions can be found in [16], the proof

of 6) in Proposition 3.1 being similar, although independently obtained, to the solution presented therein by

Bapat.

4. Eigenvalues of Sa and Ma,b. In this section and in the following ones, we consider real skew-

symmetric matrices of order 8 written as bordered matrices in the partitioned form

Ma,b =

[
Sa b

−bT 0

]
,

with b =
[
b1 b2 b3 b4 b5 b6 b7

]T
, a =

[
a1 a2 a3 a4 a5 a6 a7

]T ∈ R7×1. These 8 × 8

matrices constitute a generalization of the 4× 4 matrices in [17].

Proposition 4.1. [13] Let E ∈ Rr×r, F ∈ Rr×1 and G ∈ Rr×1. Then

det

[
E F

GT 0

]
= −GT adj(E)F.

Theorem 4.2. The determinant of Ma,b is

det(Ma,b) = (aTa)2(aT b)2.

Proof. By Proposition 4.1,

det(Ma,b) = bT adj(Sa)b,

where adj(Sa) is the adjugate of Sa. Some straightforward calculations lead to adj(Sa) = (aTa)2(aaT ).

Hence, det(Ma,b) = bT (aTa)2(aaT )b = (aTa)2(aT b)2.
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Before proceeding to the problem of determining the eigenvalues of Sa and Ma,b, we recall a result

related to block determinants.

Proposition 4.3. [13] Let E ∈ Rr×r, F ∈ Rr×s, G ∈ Rs×r and H ∈ Rs×s.

det

[
E F

G H

]
=

{
det(E) det(H −GE−1F ) when E−1 exists

det(H) det(E − FH−1G) when H−1 exists
,

where H −GE−1F and E − FH−1G are the Schur complements of E and H, respectively.

Theorem 4.4. The characteristic polynomial of Ma,b is

pMa,b
(λ) = (λ2 + aTa)2(λ4 + λ2(aTa+ bT b) + (aT b)2).

Proof. The characteristic polynomial of Ma,b is given by

pMa,b
(λ) = det(Ma,b − λI8) = det

[
Sa − λI7 b

−bT −λ

]
.

If λ = 0 then pMa,b
(0) = det(Ma,b) = (aTa)2(aT b)2. Assume that λ 6= 0. Then Sa − λI7 is invertible. Since,

through straightforward calculations, the adjugate and the determinant of this matrix are, respectively,

(λ2 + aTa)2(λ(Sa + λI7) + aaT ) and − λ(λ2 + aTa)3,

then

(Sa − λI7)−1 = − 1

λ2 + aTa

(
Sa + λI7 +

1

λ
aaT

)
.

By Proposition 4.3,

det(Ma,b − λI8) = det(Sa − λI7)(−λ+ bT (Sa − λI7)−1b).

As bTaaT b = (aT b)2 and, by 2) of Proposition 3.1, bTSab = 0, we arrive at pMa,b
(λ) = det(Ma,b − λI8) =

(λ2 + aTa)2(λ4 + λ2(aTa+ bT b) + (aT b)2).

Corollary 4.5. The eigenvalues of Sa are 0 and ±||a||i.

Proof. Since the characteristic polynomial of Sa is −λ(λ2 + aTa)3, it is a consequence of the proof of

Theorem 4.4.

Corollary 4.6. The eigenvalues of Ma,b are the purely imaginary numbers

±||a|| i and ±
√

1

2
(||a||2 + ||b||2 ± ||a− b|| ||a+ b||) i.

Proof. From Theorem 4.4, putting λ2 = x in pMa,b
(λ), we obtain

(x+ aTa)2(x2 + (aTa+ bT b)x+ (aT b)2) = 0.

Thus,

x = −aTa or x1,2 = −a
Ta+ bT b

2
±
√

(aTa+ bT b)2 − 4(aT b)2

2
.
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We have x1 + x2 = −(aTa + bT b) and x1x2 = (aT b)2. So, invoking Girard-Newton-Viète laws, x1 ≤ 0 and

x2 ≤ 0. Finally, a straightforward computation leads to the result since

x = −aTa or x1,2 = −a
Ta+ bT b

2
±
√

(a− b)T (a− b)(a+ b)T (a+ b)

2
.

Remark 4.7. Assume that a and b are orthogonal vectors. So, ||a||2 + ||b||2 = ||a + b||2. By Corollary

4.6, the eigenvalues of Ma,b are ±||a|| i, 0 and ±||a+ b|| i. Invoking Gerschgorin’s Theorem in [13], we obtain

||a+ b|| ≤ max{ri : i ∈ {1, . . . , 8}},

where rt =

7∑
s=1
s 6=t

|as|+ |bt| for t ∈ {1, . . . , 7}, r8 =

7∑
k=1

|bk|.

Taking a =
[

1 −1 1 −1 0 0 0
]T

and b =
[

1 1 1 1 1 1 1
]T

, we see that this upper

bound can be sharper than ||a||+||b||, the one given by the triangle inequality. Concretely, we get max{3, 4} <
2 +
√

7.

5. Inverses of Ma,b. The Moore-Penrose inverse of Sa was characterized in Section 3. Depending on

the determinant of Ma,b, either the inverse or the Moore-Penrose inverse of Ma,b may be determined. For

this purpose, we recall the following result where *, R(A) and N(A) stand for the conjugate transpose of a

matrix, the column space of A and the nullspace of A, respectively.

Theorem 5.1. [12] Let T denote the complex bordered matrix

[
A c

d∗ α

]
, where A is m ×m, c and d

are columns, and α is a scalar. Let k = A†c, h∗ = d∗A†, u = (I − AA†)c, v = (I − A†A)d, w1 = 1 + k∗k,

w2 = 1 + h∗h and β = α− d∗A†c. Then

1. rank(T ) = rank(A) + 2 if and only if c /∈ R(A) and d /∈ R(A∗),

2. rank(T ) = rank(A) if and only if c ∈ R(A), d ∈ R(A∗) and β = 0.

The Moore-Penrose inverse of T is as follows.

1) When rank(T ) = rank(A) + 2,

T † =

[
A† − ku† − v∗†h∗ − βv∗†u† v∗†

u† 0

]
.

2) When rank(T ) = rank(A),

T † =

[
A† − w−11 kk∗A† − w−12 A†hh∗ w−12 A†h

w−11 k∗A† 0

]
+
k∗A†h

w1w2

[
k

−1

] [
h∗ −1

]
.

Proposition 5.2. Consider the matrix Ma,b =

[
Sa b

−bT 0

]
. Following the notation in Theorem 5.1,

let:

k = S†ab, h = −(S†a)T b, w1 = 1 + kT k, w2 = 1 + hTh,

α = 0, β = bTS†ab, u = (I7 − SaS†a)b, v = −(I7 − S†aSa)b.
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Then β = 0 and the subsequent equalities hold:

k = h =

{
0 if a = 0
1
aT a

STa b if a 6= 0
,

w1 = w2 =

{
1 if a = 0

1 + (aT a)(bT b)−(aT b)2
(aT a)2

if a 6= 0
, u = −v =

{
b if a = 0
aT b
aT a

a if a 6= 0
.

Proof. The equalities hold trivially when a = 0. So, assume that a 6= 0. By the properties of Sa in

Proposition 3.1, we have

k = S†ab = − 1

aTa
Sab =

1

aTa
STa b,

h = (S†a)T (−b) = − 1

aTa
STa (−b) = k,

w1 = 1 + kT k = 1− 1

(aTa)2
bTS2

ab = 1 +
bT (aTa)b− (aT b)T (aT b)

(aTa)2
= 1 +

(aTa)(bT b)− (aT b)2

(aTa)2
,

w2 = 1 + hTh = 1 + kT k = w1,

β = bTS†ab = − 1

aTa
bTSab =

1

aTa
bTSba = − 1

aTa
(Sbb)

Ta = 0,

u = (I7 − SaS†a)b =

(
I7 +

1

aTa
S2
a

)
b =

(
I7 +

1

aTa
(aaT − aTaI7)

)
b =

aT b

aTa
a,

v = −(I7 − S†aSa)b = −(I7 − SaS†a)b = −u.

Theorem 5.3. Consider the matrix

Ma,b =

[
Sa b

−bT 0

]
.

1) If a = 0 and b 6= 0, then

M†a,b = − 1

bT b

[
07 b

−bT 0

]
.

2) If a = b = 0, then M†a,b = 08.

3) If a 6= 0 and aT b 6= 0, then

M−1a,b = − 1

aT b

 aT b
3aT a

Sa + 2
3Sb −

1
3aT a

[Sa, Sa×b] a

−aT 0

 .
4) If a 6= 0 and aT b = 0, then

M†a,b = − 1

aTa+ bT b

 (1 + bT b
3aT a

)Sa − 1
3aT a

[Sb, Sa×b] b

−bT 0
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and a generalized inverse of Ma,b is

M−a,b =

[
S†a a

−aT 0

]
.

Proof. Suppose now that a = 0 and b 6= 0. Then rank(Sa) = 0 and rank(Ma,b) = 2. So, the case 1) is a

consequence of 1) in Theorem 5.1 and Proposition 5.2.

The case 2) is straightforward.

As far as 3), assume that a 6= 0 and aT b 6= 0. Hence, by Proposition 5.2 and Theorem 4.2, u 6= 0 and

det(Ma,b) 6= 0. Consequently, b does not belong to the column space of Sa and, so, −b does not belong to

the column space of STa . By Theorem 5.1, we have rank(Ma,b) = rank(Sa) + 2. Thus, rank(Sa) = 6. Also

by the cited theorem,

M−1a,b =

[
S†a − ku† − (vT )†hT (vT )†

u† 0

]
.

Invoking Proposition 5.2, we conclude that:

u† =
uT

uTu
=

1

aT b
aT ,

ku† =
1

aTa
STa b

1

aT b
aT = − 1

(aTa)(aT b)
Saba

T ,

(vT )† = (−uT )† = −(u†)T = − 1

aT b
a,

(vT )†hT = − 1

aT b
a

1

aTa
bTSa = − 1

(aTa)(aT b)
abTSa.

From these equalities, we arrive at

M−1a,b = − 1

aT b

[
−aT bS†a − 1

aT a
(Saba

T + abTSa) a

−aT 0

]
.

Applying the properties of Sa in Proposition 3.1, we obtain

Saba
T + abTSa = Saba

T − abTSTa

=
2

3
SSaSab +

1

3
[Sa, SSab]

=
2

3
SaaT b−aT ab +

1

3
[Sa, Sa×b]

=
2

3
(aT bSa − aTaSb) +

1

3
[Sa, Sa×b].

Therefore, (aT b)S†a + 1
aT a

(Saba
T + abTSa) = − aT b

3aT a
Sa − 2

3Sb + 1
3aT a

[Sa, Sa×b], and 3) follows.

In order to prove 4), suppose now that a 6= 0 and aT b = 0. Thus, det(Ma,b) = 0. By Proposition 5.2,

we have

k = h = − 1

aTa
Sab,
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w1 = w2 = 1 +
bT b

aTa
,

and

u = v = 0.

Moreover, b ∈ N(aT ) and N(aT ) = R(Sa) since R(Sa) = (N(STa ))⊥ = 〈a〉⊥. Consequently, rank(Ma,b) =

rank(Sa) and, by Theorem 5.1, we get

M†a,b =

[
S†a − w−11 kkTS†a − w−12 S†ahh

T w−12 S†ah

w−11 kTS†a 0

]
+
kTS†ah

w1w2

[
k

−1

] [
hT −1

]
.

Taking into account the properties in Proposition 3.1 and in Proposition 5.2, we have

kTS†ah

w1w2
=
hTS†ah

w2
1

= − bTSaS
†
aSab

(aTa+ bT b)2
= − bTSab

(aTa+ bT b)2
= 0,

kTS†a = hTS†a = − 1

(aTa)2
bTS2

a =
−1

(aTa)2
bT (aaT − aTaI7) =

1

aTa
bT ,

S†ah = S†ak = (kT (S†a)T )T = −(kTS†a)T = − 1

aTa
b,

and

−kkTS†a − S†ahhT =
1

aTa
(−kbT + bkT ) =

1

(aTa)2
(Sabb

T + bbTSa).

We also obtain

Sabb
T + bbTSa = Sabb

T − bbTSTa

=
2

3
SSbSab +

1

3
[Sb, SSab]

=
2

3
S−SbSba +

1

3
[Sb, Sa×b]

=
2

3
SbT ba−bbT a +

1

3
[Sb, Sa×b]

=
2

3
bT bSa +

1

3
[Sb, Sa×b],

S†a +
1

(aTa)2w1
(Sabb

T + bbTSa) =
−1

aTa+ bT b

(
aTa+ bT b

aTa
Sa −

1

aTa
(Sabb

T + bbTSa)

)
=

−1

aTa+ bT b

(
Sa +

bT b

aTa
Sa −

2bT b

3aTa
Sa −

1

3aTa
[Sb, Sa×b]

)
= − 1

aTa+ bT b

((
1 +

bT b

3aTa

)
Sa −

1

3aTa
[Sb, Sa×b]

)
,

w−12 S†ah = − 1

w1aTa
b = − 1

aTa+ bT b
b,

w−11 kTS†a =
1

w1aTa
bT =

1

aTa+ bT b
bT .

Hence, the first part of 4) follows. To finish the proof, observe that[
Sa b

−bT 0

] [
S†a a

−aT 0

] [
Sa b

−bT 0

]
=

[
SaS

†
aSa − SaabT SaS

†
ab

−bTS†aSa −bTS†ab

]
= Ma,b
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since

SaS
†
aSa − SaabT = Sa,

SaS
†
ab =

−1

aTa
S2
ab =

−1

aTa
(aaT b− aTab) = b,

−bTS†aSa =
1

aTa
bTS2

a =
1

aTa
(bTaaT − bTaTa) = −bT ,

and

−bTS†ab =
1

aTa
bTSab = − 1

aTa
bTSba =

1

aTa
(Sbb)

Ta = 0.

6. Rotation matrices from Sa and Ma,b. Possible representations for rotation operators are the ones

in the form of rotation matrices. In particular, the Cayley transform and the exponential of a skew-symmetric

matrix may be considered.

Let us begin with the Cayley transform of Sa and with the Cayley transform of Ma,b, writing the latter

in terms of the former one. With this purpose in mind, we first recall the following result.

Proposition 6.1. [13] Let E ∈ Rr×r, F ∈ Rr×s, G ∈ Rs×r, H ∈ Rs×s and

N =

[
E F

G H

]
.

If E and J = H −GE−1F , the Schur complement of E in N , are invertible, then

N−1 =

[
E−1 + E−1FJ−1GE−1 −E−1FJ−1

−J−1GE−1 J−1

]
.

Theorem 6.2. The Cayley transform of Ma,b is the rotation matrix

C(Ma,b) =


C(Sa)− 2

s
S−1bbTS−1 −2

s
S−1b

2

s
bTS−1

2

s
− 1

 ,
where S stands for Sa + I7, s is the Schur complement of S in I8 +Ma,b and C(Sa) is the Cayley transform

of Sa given by the rotation matrix

C(Sa) =
1

1 + aTa
(−2Sa + 2aaT + (1− aTa)I7).

Proof. Let us denote Sa + I7 by S. Invoking the proof of Theorem 4.4, we have

S−1 = − 1

1 + aTa
(Sa − I7 − aaT ).

As C(Sa) = 2S−1 − I7, then the stated formula for C(Sa) follows. Furthermore, the Schur complement

1 + bTS−1b of S in I8 +Ma,b is equal to

s =
1 + aTa+ bT b+ (aT b)2

1 + aTa
.
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and, so, is invertible. By Proposition 6.1, we obtain

(I8 +Ma,b)
−1 =

1

s

[
sS−1 − S−1bbTS−1 −S−1b

bTS−1 1

]
.

Taking into account that 2
s (sS−1−S−1bbTS−1)−I7 = C(Sa)− 2

sS
−1bbTS−1 and C(Ma,b) = 2(I8+Ma,b)

−1−I8,

we arrive at the stated matrix for C(Ma,b).

An explicit expression for computing the exponential of an order 3 skew-symmetric matrix B is given by

the Rodrigues’ formula, a consequence of B3 = −α2B for a certain scalar α. Although this does not hold in

general for an order n ≥ 4, hypercomplex matrices are an exception, [9]. Moreover, a generalization of the

Rodrigues’ formula that allows to compute the exponential of a skew-symmetric matrix of order n ≥ 3 was

proposed in [5].

Theorem 6.3. [9] Let a = a0 + a ∈ O with ||a|| = α 6= 0. Then

etSa = I cos(αt) + Sa
sin(αt)

α
+

1− cos(αt)

α2
aaT .

Theorem 6.4. [5] Given any non-null skew-symmetric n×n matrix B, where n ≥ 3, if the set of distinct

eigenvalues of B is {iθ1,−iθ1, . . . , iθp,−iθp}, where θj > 0 and each iθj (and −iθj) has multiplicity kj ≥ 1,

there are p unique skew-symmetric matrices B1, . . . , Bp such that

B = θ1B1 + · · ·+ θpBp, BiBj = BjBi = 0n(i 6= j), B3
i = −Bi

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n. Furthermore,

eB = eθ1B1+···+θpBp = In +

p∑
i=1

(sin θiBi + (1− cos θi)B
2
i ).

Theorem 6.5. Let a, b ∈ R7 such that a 6= 07×1. The exponentials of Sa and of Ma,b are, respectively,

the rotation matrices

eSa = I7 +
sin ||a||
||a||

Sa +
1− cos ||a||
||a||2

S2
a

and

eMa,b = I8 +

p∑
k=1

(sin θkMa,b,k + (1− cos θk)M2
a,b,k),

where

p =

{
2 if aT b = 0

3 if aT b 6= 0
, {θj : 1 ≤ j ≤ p} =

{
{||a||, ||a+ b||} if p = 2{
||a||,

√
1
2 (||a||2 + ||b||2 ± ||a− b|| ||a+ b||)

}
if p = 3

and the p unique skew-symmetric matrices Ma,b,k can be obtained through the solution of a 28p× 28p linear

equations system deduced from

Ma,b =

p∑
k=1

θkMa,b,k, M
3
a,b = −

p∑
k=1

θ3kMa,b,k, . . . , M
2p−1
a,b = (−1)p−1

p∑
k=1

θ2p−1k Ma,b,k.
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Proof. Let a, b ∈ R7 such that a 6= 07×1.

From 4) in Proposition 3.1, we have aaT = S2
a + ||a||2I7. Hence, by Theorem 6.3, we obtain the stated

Rodrigues-like formula for the exponential of Sa.

By Theorem 6.4, we obtain the stated formulas for the exponential of Ma,b and its odd powers, where

{±θji : θj > 0, 1 ≤ j ≤ p} is the set of distinct non-null eigenvalues of Ma,b. From Theorem 4.2, we

have det(Ma,b) = (aTa)2(aT b)2. If aT b = 0 then Ma,b has, at least, an eigenvalue equal to 0 and b 6= −a.

By Corollary 4.6, we obtain θ1 = ||a|| and θ2 = ||a + b||. Hence, p = 2. If aT b 6= 0 then all eigenvalues

of Ma,b are different from 0. Thus, p = 3. Concretely, once again by Corollary 4.6, we get θ1 = ||a||,
θ2 =

√
1
2 (||a||2 + ||b||2 − ||a− b|| ||a+ b||), θ3 =

√
1
2 (||a||2 + ||b||2 + ||a− b|| ||a+ b||).

The generalization in [5] is theoretically interesting, however, according to [3], its computational cost

seems prohibitive unless n is small. See [3] for details on effective methods for performing the computation

of the exponential of a skew-symmetric matrix.
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