2017

The general ϕ-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations

Zhuo-Heng He
Auburn University, hzh19871126@126.com

Jianzhen Liu
Auburn University, jzl0073@auburn.edu

Tin-Yau Tam
Auburn University, tamtiny@auburn.edu

Follow this and additional works at: http://repository.uwyo.edu/ela

Part of the [Algebra Commons](http://repository.uwyo.edu/ela), and the [Control Theory Commons](http://repository.uwyo.edu/ela)

Recommended Citation

DOI: https://doi.org/10.13001/1081-3810.3606

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
THE GENERAL ϕ-HERMITIAN SOLUTION TO MIXED PAIRS OF QUATERNION MATRIX SYLVESTER EQUATIONS

ZHOU-HENG HE†, JIANZHEN LIU†, AND TIN-YAU TAM†

Abstract. Let $\mathbb{H}^{m \times n}$ be the space of $m \times n$ matrices over \mathbb{H}, where \mathbb{H} is the real quaternion algebra. Let A_ϕ be the $n \times m$ matrix obtained by applying ϕ entrywise to the transposed matrix A^T, where $A \in \mathbb{H}^{m \times n}$ and ϕ is a nonstandard involution of \mathbb{H}. In this paper, some properties of the Moore-Penrose inverse of the quaternion matrix A_ϕ are given. Two systems of mixed pairs of quaternion matrix Sylvester equations $A_1X - YB_1 = C_1$, $A_2Z - YB_2 = C_2$ and $A_1X - YB_1 = C_1$, $A_2Y - ZB_2 = C_2$ are considered, where Z is ϕ-Hermitian. Some practical necessary and sufficient conditions for the existence of a solution (X,Y,Z) to those systems in terms of the ranks and Moore-Penrose inverses of the given coefficient matrices are presented. Moreover, the general solutions to these systems are explicitly given when they are solvable. Some numerical examples are provided to illustrate the main results.

Key words. Quaternion, Sylvester-type equations, Moore-Penrose inverse, ϕ-Hermitian solution, Involution, Rank.

AMS subject classifications. 15A09, 15A23, 15A24, 15B33, 15B57, 16R50.

1. Introduction. Quaternions and quaternion matrices have wide applications in many fields such as signal and color image processing, control theory, orbital mechanics, computer science, and etc (e.g. [1], [23], [25], [32]–[34], [46]). Linear control equations over quaternion algebra have been studied in [25] and [26]. There are various types of linear control equations over quaternion algebra. Sylvester-type equation is one of the important equations in system and control theory and has a huge amount of practical applications in neural network [47], robust control [36], output feedback control [31], the almost noninteracting control ([37], [42]), graph theory [6], and so on. There have been many papers discussing the Sylvester-type matrix equations over a field and quaternion algebra \mathbb{H} (e.g. [2]–[11], [18]–[20], [22], [28]–[30], [39]–[43], [48]).

Rodman [27] considered the standard Sylvester matrix equation $AX - XB = C$ over quaternion algebra. Futorny et al. [8] derived some solvability conditions for the generalized Sylvester equations $AX - \hat{X}B = C$ and $X - A\hat{X}B = C$ over \mathbb{H}. He et al. [9] gave some solvability conditions and general solution to the system of two-sided coupled generalized Sylvester quaternion matrix equations with four unknowns

$$A_iX_iB_i + C_iX_{i+1}D_i = E_i, \quad i = 1, 2, 3,$$

where A_i, B_i, C_i, D_i, E_i ($i = 1, 2, 3$) are given quaternion matrices, and X_1, \ldots, X_4 are unknowns. Very recently, Dmytryshyn et al. [7] gave some solvability conditions for the system of quaternion matrix generalized Sylvester equations

$$A_iX_i^{\varepsilon_i}M_i - N_iX_i^{\delta_i}B_i = C_i, \quad i, i' \in \{1, \ldots, t\}, \quad i = 1, \ldots, s,$$

where $\varepsilon_i, \delta_i \in \{1, \ast\}$ and X^* is the quaternion adjoint matrix. There are two forms of mixed pairs of matrix
Sylvester equations with three variables:

\[
\begin{align*}
& A_1 X - Y B_1 = C_1, \\
& A_2 Z - Y B_2 = C_2,
\end{align*}
\]
(1.1)

and

\[
\begin{align*}
& A_1 X - Y B_1 = C_1, \\
& A_2 Y - Z B_2 = C_2,
\end{align*}
\]
(1.2)

where \(A_i, B_i \) and \(C_i \) \((i = 1, 2)\) are given matrices and \(X, Y, Z \) are unknowns. Lee and Vu \[21\] presented a solvability condition for the mixed pairs of matrix Sylvester equations (1.1) through the corresponding equivalence relations of the block matrices. Wang and He \[39\] gave some new computable necessary and sufficient solvability conditions for the system (1.1), and presented the general solution when (1.1) is solvable. He and Wang \[16\] derived necessary and sufficient solvability conditions and gave the general solution to (1.2).

Quaternion matrix equation and its general solution, especially Hermitian solutions, are important in systems and control theory \[27\]. \(\phi \)-Hermitian quaternion matrix was first presented by Rodman \[27, Definition 2.4\] in 2014. To our best knowledge, there has been little information on the \(\phi \)-Hermitian solutions to quaternion matrix Sylvester-type equations. Motivated by the wide application of quaternion matrix equations and Sylvester-type matrix equations and in order to improve the theoretical development of the \(\phi \)-Hermitian solutions to quaternion matrix equations, we consider the mixed pairs of quaternion matrix Sylvester equations (1.1) and (1.2), where \(Z \) is \(\phi \)-Hermitian. More specifically,

\[
\begin{align*}
& A_1 X - Y B_1 = C_1, \\
& A_2 Z - Y B_2 = C_2, \\
& Z = Z_\phi,
\end{align*}
\]
(1.3)

and

\[
\begin{align*}
& A_1 X - Y B_1 = C_1, \\
& A_2 Y - Z B_2 = C_2, \\
& Z = Z_\phi.
\end{align*}
\]
(1.4)

The remainder of the paper is organized as follows. In Section 2, we review some definitions of non-standard involution \(\phi \), quaternion matrix \(A_\phi \) and the \(\phi \)-Hermitian quaternion matrix. We also give some numerical examples to illustrate these definitions. In Section 3, we derive some properties of the Moore-Penrose inverse of the quaternion matrix \(A_\phi \). In Sections 4 and 5, we provide some necessary and sufficient conditions for the existence of a solution \((X, Y, Z)\) to the mixed pairs of quaternion matrix Sylvester equations (1.3) and (1.4), respectively. Furthermore, we present the general solutions to (1.3) and (1.4) when they are solvable.

2. Definition of \(\phi \)-Hermitian quaternion matrix and examples. Let \(\mathbb{R} \) and \(\mathbb{H}^{m\times n} \) stand, respectively, for the real field and the space of all \(m \times n \) matrices over the real quaternion algebra

\[
\mathbb{H} = \{ a_0 + a_1 i + a_2 j + a_3 k \mid i^2 = j^2 = k^2 = ijk = -1, \ a_0, a_1, a_2, a_3 \in \mathbb{R} \}.
\]

It is well known that the quaternion algebra is an associative and noncommutative division algebra. Denoted by \(r(A) \) and \(A^* \) the rank of a given real quaternion matrix \(A \) and its conjugate transpose \(A^* \), respectively. \(I \) and \(0 \) are the identity matrix and zero matrix with appropriate sizes, respectively.

The definitions of the nonstandard involution \(\phi \), quaternion matrix \(A_\phi \), and the \(\phi \)-Hermitian quaternion matrix were first presented by Rodman \[27\]. At first, we give the definition of an involution.
The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

Definition 2.1 (Involution). [27] A map $\phi: \mathbb{H} \to \mathbb{H}$ is called an anti-endomorphism if $\phi(x y) = \phi(y)\phi(x)$ for all $x, y \in \mathbb{H}$, and $\phi(x + y) = \phi(x) + \phi(y)$ for all $x, y \in \mathbb{H}$. An anti-endomorphism ϕ is called an involution if ϕ^2 is the identity map.

Involutions have matrix representation as given in the following lemma.

Lemma 2.2. [27] Let ϕ be an anti-endomorphism of \mathbb{H}. Assume that ϕ does not map \mathbb{H} into zero. Then ϕ is bijective; thus, ϕ is in fact an anti-automorphism. Moreover, ϕ is real linear, and represents ϕ as a 4×4 real matrix with respect to the basis $\{1, i, j, k\}$ and ϕ is an involution if and only if

\[
\phi = \begin{pmatrix} 1 & 0 \\ 0 & T \end{pmatrix},
\]

where either $T = -I_3$ or T is a 3×3 real orthogonal symmetric matrix with eigenvalues $1, 1, -1$.

Based on Lemma 2.2, the involutions can be classified into two classes:

- **standard involution** $\phi = \begin{pmatrix} 1 & 0 \\ 0 & -I_3 \end{pmatrix}$;
- **nonstandard involution** $\phi = \begin{pmatrix} 1 & 0 \\ 0 & T \end{pmatrix}$, where T is a 3×3 real orthogonal symmetric matrix with eigenvalues $1, 1, -1$.

For $A \in \mathbb{H}^{m \times n}$, we denote by A_ϕ [27] the $n \times m$ matrix obtained by applying ϕ entrywise to the transposed matrix A^T, where ϕ is a nonstandard involution. Here are some examples of A_ϕ, where ϕ is a nonstandard involution.

Example 2.3. The map $\phi: \mathbb{H}^{m \times n} \to \mathbb{H}^{n \times m}$, where $\phi(A) = A^{\eta*} = -\eta A^* \eta$ and $\eta \in \{i, j, k\}$, is a nonstandard involution. Some properties of this nonstandard involution can be found in [12], [15], [17] and [35]. If $\eta = i$, we have $\phi(i) = -i$, $\phi(j) = j$, $\phi(k) = k$, and

\[
\begin{pmatrix} 1 & -i + j \\ 1 + k & 2 - j \end{pmatrix} \phi = \begin{pmatrix} 1 + k & 1 \\ i + j & 2 - j \end{pmatrix}.
\]

Example 2.4. The map $\phi: \mathbb{H}^{m \times n} \to \mathbb{H}^{n \times m}$, where $\phi(A) = A^{\xi*} = -\xi A^* \xi$ and $\xi \in \left\{ \frac{\sqrt{2}}{2}(i + j), \frac{\sqrt{2}}{2}(i + k), \frac{\sqrt{2}}{2}(j + k) \right\}$, is a nonstandard involution. In particular,

- when $a = a_0 + a_1 i + a_2 j + a_3 k \in \mathbb{H}$,

\[
\begin{align*}
\frac{\sqrt{2}}{2}(i + j)^* &= a_0 - a_2 i - a_1 j + a_3 k, \text{ if } \xi = \frac{\sqrt{2}}{2}(i + j), \\
\frac{\sqrt{2}}{2}(i + k)^* &= a_0 - a_3 i + a_2 j - a_1 k, \text{ if } \xi = \frac{\sqrt{2}}{2}(i + k), \\
\frac{\sqrt{2}}{2}(j + k)^* &= a_0 + a_1 i - a_3 j - a_2 k, \text{ if } \xi = \frac{\sqrt{2}}{2}(j + k).
\end{align*}
\]
Zhao-Heng He, Jianzhen Liu, and Tin-Yau Tam

- when $\xi = \frac{\sqrt{2}}{2}(j+k)$, nonstandard involution ϕ is $\phi(i) = i$, $\phi(j) = -k$, $\phi(k) = -j$, and

$$
\left(\begin{array}{ccc}
1+i-j+2k & i+2j & i+k \\
1 & 2j-3k & k \\
\end{array}\right)_{\phi} = \left(\begin{array}{ccc}
1+i-2j+k & 1 \\
i-2k & 3j-2k \\
i-j & -j \\
\end{array}\right).
$$

Now we recall the definition of the ϕ-Hermitian matrix.

Definition 2.5 (\(\phi\)-Hermitian Matrix). $[27]$ $A \in \mathbb{H}^{n \times n}$ is said to be ϕ-Hermitian if $A = A_{\phi}$, where ϕ is a nonstandard involution.

Remark 2.6. To have a good understanding of ϕ-Hermitian matrix, we introduce two examples.

- For $\eta \in \{i, j, k\}$, a square real quaternion matrix A is said to be η-Hermitian if $A = A^{\eta^*}$, where $A^{\eta^*} = -\eta A^* \eta$. For example, $\left(\begin{array}{ccc}
1+i+k & i+j \\
i-j & i \\
\end{array}\right)$ is a j-Hermitian matrix. η-Hermitian matrix was first proposed in $[35]$, and further discussed in $[17]$. The η-Hermitian matrices arise in statistical signal processing and widely linear modelling ($[32]–[35]$).

- For $\xi \in \left\{\frac{\sqrt{2}}{2}(i+j), \frac{\sqrt{2}}{2}(i+k), \frac{\sqrt{2}}{2}(j+k)\right\}$, a square real quaternion matrix A is said to be ξ-Hermitian if $A = A^{\xi^*}$, where $A^{\xi^*} = -\xi A^* \xi$. For example, $\left(\begin{array}{ccc}
1+i-j+k & 2i+j-k \\
i-2j-k & 2i-2j \\
\end{array}\right)$ is a $\frac{\sqrt{2}}{2}(i+j)$-Hermitian matrix.

3. Properties of the Moore-Penrose inverse of A_{ϕ}

In order to solve (1.3) and (1.4), we will make use of Moore-Penrose inverse so we are going to study the properties of the Moore-Penrose inverse of A_{ϕ}. We first give the algebraic properties of quaternion matrix nonstandard involution.

Property 3.1. $[27]$ Let ϕ be a nonstandard involution. Then, the following hold:

1. $(\alpha A + \beta B)_{\phi} = A_{\phi} \phi(\alpha) + B_{\phi} \phi(\beta)$, $\alpha, \beta \in \mathbb{H}$, $A, B \in \mathbb{H}^{m \times n}$.
2. $(\alpha A + \beta B)_{\phi} = \phi(\alpha) A_{\phi} + \phi(\beta) B_{\phi}$, $\alpha, \beta \in \mathbb{H}$, $A, B \in \mathbb{H}^{m \times n}$.
3. $(AB)_{\phi} = B_{\phi} A_{\phi}$, $A \in \mathbb{H}^{m \times n}$, $B \in \mathbb{H}^{m \times p}$.
4. $(A_{\phi})_{\phi} = A$, $A \in \mathbb{H}^{m \times n}$.
5. If $A \in \mathbb{H}^{n \times n}$ is invertible, then $(A_{\phi})^{-1} = (A^{-1})_{\phi}$.
6. $r(A) = r(A_{\phi})$, $A \in \mathbb{H}^{m \times n}$.
7. $I_{\phi} = I$, $0_{\phi} = 0$.

The Moore-Penrose inverse A^\dagger of a quaternion matrix A, is defined to be the unique matrix A^\dagger, such that

$$
(6.6) \quad \text{(i) } AA^\dagger A = A, \quad \text{(ii) } A^\dagger A A^\dagger = A^\dagger, \quad \text{(iii) } (AA^\dagger)^* = AA^\dagger, \quad \text{(iv) } (A^\dagger A)^* = A^\dagger A.
$$

Furthermore, L_A and R_A stand for the projectors $L_A = I - A^\dagger A$ and $R_A = I - AA^\dagger$ induced by A, respectively. It is known that $L_A = L_A^*$ and $R_A = R_A^*$.

Property 3.1 helps us to derive properties of the Moore-Penrose inverse of the quaternion matrix A.

THEOREM 3.2. Let $A \in \mathbb{H}^{m \times n}$ be given. Then, the following hold:

1. $(A_{\phi})^\dagger = (A^\dagger)_\phi$.
2. $(L_A)_\phi = R_{A_{\phi}}$, $(R_A)_\phi = L_{A_{\phi}}$.

Proof. (1) It follows from Property 3.1 that

$$A_{\phi}(A^\dagger)_\phi A_{\phi} = (AA^\dagger A)_{\phi} = A_{\phi} \quad \text{and} \quad (A^\dagger)_\phi A_{\phi} (A^\dagger)_\phi = (A^\dagger A A^\dagger)_{\phi} = (A^\dagger)_{\phi}.$$

Hence, $(A^\dagger)_{\phi}$ satisfies the first and second equations in (3.6). Now we want to prove that $(A^\dagger)_{\phi}$ satisfies the third and fourth equations in (3.6). It follows from Lemma 2.2 that the map $A \rightarrow A^*$ and nonstandard involution ϕ correspond to the real matrices

$$Q_1 = \begin{pmatrix} 1 & 0 \\ 0 & -I_3 \end{pmatrix} \quad \text{and} \quad Q_2 = \begin{pmatrix} 1 & 0 \\ 0 & T \end{pmatrix},$$

where the matrix T in Q_2 is a 3×3 real orthogonal symmetric matrix with eigenvalues $1, 1, -1$. Note that

$$Q_1Q_2 = Q_2Q_1.$$ Hence, we have

$$(3.7) \quad (A^*)_{\phi} = (A_{\phi})^*.$$

It follows from (3.7) that

$$A_{\phi}(A^\dagger)_\phi A_{\phi} = (AA^\dagger A)_{\phi} = A_{\phi} \quad \text{and} \quad (A^\dagger)_\phi A_{\phi} (A^\dagger)_\phi = (A^\dagger A A^\dagger)_{\phi} = (A^\dagger)_{\phi}.$$

(2) By the definitions of L_A, R_A and the properties of Moore-Penrose inverse of A_{ϕ}, it follows that

$$(L_A)_\phi = (I - A^\dagger A)_{\phi} = I_{\phi} - (A^\dagger A)_{\phi} = I - A_{\phi}(A^\dagger)_{\phi} = I - A_{\phi}(A^\dagger)_{\phi}^\dagger = R_{A_{\phi}},$$

$$(R_A)_\phi = (I - A A^\dagger)_{\phi} = I_{\phi} - (A A^\dagger)_{\phi} = I - (A^\dagger)_{\phi} A_{\phi} = I - (A^\dagger)_{\phi} A_{\phi} = L_{A_{\phi}},$$

establishing $(L_A)_\phi = R_{A_{\phi}}$ and $(R_A)_\phi = L_{A_{\phi}}$. \hfill \Box

4. The solution to system (1.3). In this section, using the ranks and generalized inverses of matrices, we give some solvability conditions and the general solution to the mixed pairs of quaternion matrix Sylvester equations (1.3). At first, we review some results which will be used in this paper. The following lemma gives the solvability conditions and general solution to the mixed Sylvester matrix equations

$$(4.8) \quad \begin{cases} A_1 X_1 - X_2 B_1 = C_1, \\ A_2 X_3 - X_2 B_2 = C_2 \end{cases}$$

over \mathbb{H}.
Lemma 4.1. [39] Let $A_i, B_i,$ and C_i ($i = 1, 2$) be given matrices over \mathbb{H}. Set
\[D_1 = R_{B_1}B_2, \quad A = R_{A_2}A_1, B = B_2L_{D_1}, \quad C = R_{A_2}(R_{A_1}C_1B_1^\dagger B_2 - C_2)L_{D_1}. \]

Then, the following statements are equivalent:

1. The mixed Sylvester real quaternion matrix equations (4.8) has a solution.
2. $R_{A_1}C_1L_{B_1} = 0$, $R_{A_2}C = 0$, $CL_B = 0$.
3. \[
\begin{bmatrix} C_1 & A_1 \\ B_1 & 0 \end{bmatrix} = r(A_1) + r(B_1),
\]
\[
\begin{bmatrix} C_2 & A_2 \\ B_2 & 0 \end{bmatrix} = r(A_2) + r(B_2),
\]
\[
\begin{bmatrix} B_2 & B_1 & 0 & 0 \\ C_2 & A_1 & A_2 & 0 \end{bmatrix} = r(A_1, A_2) + r(B_1, B_2).
\]

In this case, the general solution to (4.8) can be expressed as
\[
X_1 = A_1^\dagger C_1 + U_1B_1 + L_{A_1}W_1,
\]
\[
X_2 = -R_{A_1}C_1B_1^\dagger + A_1U_1 + V_1R_{B_1},
\]
\[
X_3 = A_2^\dagger(C_2 - R_{A_1}C_1B_1^\dagger B_2 + A_1U_1B_2) + W_2D_1 + L_{A_2}W_6,
\]

where
\[
U_1 = A_1^\dagger CB_1^\dagger + L_{A_1}W_2 + W_3R_{B_1},
\]
\[
V_1 = -R_{A_2}(C_2 - R_{A_1}C_1B_1^\dagger B_2 + A_1U_1B_2)D_1^\dagger + A_2W_4 + W_5R_{D_1},
\]
and W_1, \ldots, W_6 are arbitrary matrices over \mathbb{H} with appropriate sizes.

By applying the Lemma 4.8 with conjugation, we can solve the following system of quaternion matrix equations
\[
(4.9) \quad A_1X - YB_1 = C_1, \quad A_2X - ZB_2 = C_2.
\]

More specifically,

Lemma 4.2. Let $A_i, B_i,$ and C_i ($i = 1, 2$) be given matrices over \mathbb{H}. Set
\[
A_{11} = R_{(A_2L_{A_1})A_2}, \quad B_{11} = B_1L_{B_2}, \quad C_{11} = R_{(A_2L_{A_1})}(C_2 - A_2A_1^\dagger C_1)L_{B_2}.
\]

Then, the following statements are equivalent:
The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

1. The system of quaternion matrix equations (4.9) has a solution.

2. \[R_A C L B = 0, \quad R_{A_{11}} C_{11} = 0, \quad C_{11} L_{B_{11}} = 0. \]

3. \[r \begin{pmatrix} C_1 & A_1 \\ B_1 & 0 \end{pmatrix} = r(A_1) + r(B_1), \]
 \[r \begin{pmatrix} C_2 & A_2 \\ B_2 & 0 \end{pmatrix} = r(A_2) + r(B_2), \]
 \[r \begin{pmatrix} C_1 & A_1 \\ C_2 & A_2 \\ B_1 & 0 \\ B_2 & 0 \end{pmatrix} = r \begin{pmatrix} A_1 \\ A_2 \\ B_1 \\ B_2 \end{pmatrix}. \]

In this case, the general solution to (4.9) can be expressed as

\[X = A_1^\dagger C_1 + V_2 B_1 + L_{A_1} U_2, \]
\[Y = -R_A C_1 B_1^\dagger + A_1 V_2 + W_6 R_{B_1}, \]
\[Z = -R_{(A_2 L_{A_1})} (C_2 - A_2 A_1^\dagger C_1 - A_2 V_2 B_1) B_2^\dagger + A_2 L_{A_1} W_1 + W_5 R_{B_2}, \]

where

\[V_2 = A_{11}^\dagger C_{11} B_{11}^\dagger + L_{A_{11}} W_1 + W_5 R_{B_{11}}, \]
\[U_2 = (A_2 L_{A_1})^\dagger (C_2 - A_2 A_1^\dagger C_1 - A_2 U_1 B_1) + W_1 B_2 + L_{(A_2 L_{A_1})} W_2, \]

and W_1, \ldots, W_6 are arbitrary matrices over \mathbb{H} with appropriate sizes.

The following real quaternion matrix equation

\[(4.10) \quad A_1 X_1 + X_2 B_1 + C_3 X_3 D_3 + C_4 X_4 D_4 = E_1 \]

is needed in solving the systems (1.3) and (1.4). The solution to (4.10) over any arbitrary division rings with involutonal anti-automorphisms are given in [14]. Note that quaternion algebra is a special case of an arbitrary division ring. Hence, we can also give the solvability conditions and the general solution to real quaternion matrix equation (4.10).

Lemma 4.3. [14, 38] Let $A_1, B_1, C_3, D_3, C_4, D_4,$ and E_1 be given matrices over \mathbb{H}. Set

\[A = R_A C_3, \quad B = D_3 L_{B_1}, \quad C = R_A C_4, \quad D = D_A L_{B_1}, \]
\[E = R_A E_1 L_{B_1}, \quad M = R_A C, \quad N = D L_{B}, \quad S = C L M. \]
Then the quaternion matrix equation (4.10) has a solution if and only if
\[R_M R_A E = 0, \quad E L_B L_N = 0, \quad R_A E L_D = 0, \quad R_C E L_B = 0. \]
In this case, the general solution can be expressed as
\[
X_1 = A_1^1(E_1 - C_3 X_3 D_3 - C_4 X_4 D_4) - A_1^1 T_7 B_1 + L_A T_6,
\]
\[
X_2 = R_{A_1}^1(E_1 - C_3 X_3 D_3 - C_4 X_4 D_4)B_1^1 + A_1 A_2^1 T_7 + T_8 R_{B_1},
\]
\[
X_3 = A^1 E B^1 - A^1 C M^1 E B^1 - A^1 S C^1 E N^1 D B^1 - A^1 S T_3 R_N D B^1 + L_A T_4 + T_5 R_B,
\]
\[
X_4 = M^1 E D^1 + S^1 S C^1 E N^1 + L_M L_S T_1 + L_M T_2 R_N + T_3 R_D,
\]
where \(T_1, \ldots, T_8 \) are arbitrary matrices over \(\mathbb{H} \) with appropriate sizes.

To simplify the solution of (1.3), we introduce the following lemma.

Lemma 4.4. [24] Given \(A \in \mathbb{H}^{m \times n}, B \in \mathbb{H}^{m \times k}, \) and \(C \in \mathbb{H}^{l \times n}, \) we have:

1. \(r(A) + r(R_A B) = r(B) + r(R_B A) = r(A, B). \)
2. \(r(A) + r(C L_A) = r(C) + r(AL_C) = r \left(\frac{A}{C} \right). \)

In the following theorem, we will give two solvability conditions and the general solution to the mixed pairs of quaternion matrix Sylvester equations (1.3). For simplicity, put

\[
A_{11} = R_{B_2} B_1, \quad B_{11} = R_{A_1} A_2, \quad C_{11} = B_1 L_{A_{11}}, \quad D_{11} = R_{A_1} (R_{A_2} C_2 B_2^1 B_1 - C_1) L_{A_{11}},
\]

\[
A_{22} = (L_{A_2}, -(R_{C_1} B_2) \phi), \quad B_{22} = \left(\frac{R_{C_1} B_2}{-L_{A_2} \phi} \right), \quad D_{22} = [R_{A_1} (-C_1 + C_2 B_2^1 B_1) L_{A_{11}}] \phi,
\]

\[
C_{22} = (A_2^1 C_2 L_{B_2} \phi) + (B_2) \phi (C_1^1) \phi D_{22} (B_{11}) \phi - A_2^1 C_2 - B_1^1 D_{11} C_1^1 B_2,
\]

\[
A = R_{A_{22}} L_{B_{11}}, \quad B = B_2 L_{B_{22}}, \quad C = -R_{A_{22}} (B_2) \phi, \quad D = (L_{B_{11}}) \phi L_{B_{22}},
\]

\[
E = R_{A_{22}} C_{22} L_{B_{22}}, \quad M = R_{A_1} C, \quad N = D L_B, \quad S = C L_M.
\]

Theorem 4.5. Let \(A_i, B_i \) and \(C_i \) \((i = 1, 2)\) be given matrices over \(\mathbb{H} \). Then the following statements are equivalent:

1. The mixed pairs of quaternion matrix Sylvester equations (1.3) has a solution \((X, Y, Z)\).
2. \[
(4.16) \quad r \begin{pmatrix} C_i & A_i \\ B_i & 0 \end{pmatrix} = r(A_i) + r(B_i), \quad i = 1, 2,
\]
The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

\begin{equation}
(4.17) \quad r \begin{pmatrix} C_1 & C_2 & A_1 & A_2 \\ B_1 & B_2 & 0 & 0 \end{pmatrix} = r(A_1, A_2) + r(B_1, B_2),
\end{equation}

\begin{equation}
(4.18) \quad r \begin{pmatrix} C_1 & C_2(A_2) - A_2(C_2) & A_1 & A_2(B_2) \\ B_1 & B_2(A_2) & 0 & 0 \end{pmatrix} = r(A_1, A_2(B_2) + r(B_1, B_2(A_2)),
\end{equation}

\begin{equation}
(4.19) \quad r \begin{pmatrix} C_1 & C_2(A_2) - A_2(C_2) & A_1 & A_2(B_2) \\ B_1 & B_2(A_2) & 0 & 0 \end{pmatrix} = 2r(A_2(B_2)),
\end{equation}

\begin{equation}
(4.20) \quad r \begin{pmatrix} C_1 & C_2(A_2) - A_2(C_2) & A_1 & A_2(B_2) \\ B_1 & B_2(A_2) & 0 & 0 \end{pmatrix} = 2r \begin{pmatrix} A_1 & A_2(B_2) \\ 0 & (B_1) \end{pmatrix}.
\end{equation}

(3)

\begin{equation}
(4.21) \quad R_{A_2}C_2L_{B_2} = 0, \quad D_{11}L_{C_{11}} = 0, \quad R_{B_{11}}D_{11} = 0,
\end{equation}

\begin{equation}
(4.22) \quad R_MR_AE = 0, \quad R_CEL_B = 0, \quad R_AEL_D = 0.
\end{equation}

In this case, the general solution to (1.3) can be expressed as

\begin{equation}
(4.23) \quad X = \frac{X_1 + (X_5)}{2}, \quad Y = \frac{X_2 + (X_4)}{2}, \quad Z = Z_\phi = \frac{X_3 + (X_3)}{2},
\end{equation}

where

\begin{equation}
(4.24) \quad X_1 = A_1^t(C_1 - R_{A_2}C_2B_2^tB_1 + A_2U_1B_1) + W_4A_{11} + L_{A_1}W_6,
\end{equation}

\begin{equation}
(4.25) \quad X_2 = -R_{A_2}C_2B_2^t + A_2U_1 + V_1R_{B_2},
\end{equation}

\begin{equation}
(4.26) \quad X_4 = -(C_2B_2^t) + V_2(A_2) + (R_{B_2})U_2,
\end{equation}

\begin{equation}
(4.27) \quad X_5 = -[(A_1)^t(-C_1 + C_2B_2^tB_1 - A_2V_2)B_1L_{A_{11}} + (A_{11})T_1 + T_3(L_{A_{11}}),
\end{equation}

\begin{equation}
(4.28) \quad X_3 = A_2^tC_2 + U_2B_2 + L_{A_2}W_1,
\end{equation}

or

\begin{equation}
(4.29) \quad X_3 = (A_2^tC_2L_{B_2}) + (B_2)V_2 + T_6(L_{A_2}),
\end{equation}

\begin{equation}
(4.30) \quad U_1 = B_{11}^tD_{11}C_{11} + L_{B_{11}}W_2 + W_3R_{C_{11}},
\end{equation}
(4.31) \[V_1 = -R_{A1}(C_1 - R_{A2}C_2B_2^tB_1 + A_2U_1B_1)A_{11}^t + A_1W_4 + W_5R_{A11}, \]

(4.32) \[V_2 = (C_{11}^t)D_{22}(B_{11}^t) + (R_{C_{11}})T_4 + T_5(L_{B_{11}}), \]

(4.33) \[U_2 = [-C_1 + C_2B_2^tB_1 - A_2(V_2)B_1(A_{11}^t)] + T_1(A_1) + (R_{A_1})T_2, \]

(4.34) \[W_1 = (I_{p_1}, 0)[A_{22}^t(C_{22} - L_{B_{11}}W_2B_2 + (B_2)T_5(L_{B_{11}})) - A_{22}^tZ_7B_{22} + L_{A_{22}}Z_8], \]

(4.35) \[T_4 = (0, I_{p_2})[A_{22}^t(C_{22} - L_{B_{11}}W_2B_2 + (B_2)T_5(L_{B_{11}})) - A_{22}^tZ_7B_{22} + L_{A_{22}}Z_8], \]

(4.36) \[W_3 = [R_{A_{22}}(C_{22} - L_{B_{11}}W_2B_2 + (B_2)T_5(L_{B_{11}}))B_{22}^t + A_{22}^tZ_7 + Z_8R_{B_{22}}] \left(\begin{array}{c} I_{p_2} \\ 0 \end{array} \right), \]

(4.37) \[T_5 = [R_{A_{22}}(C_{22} - L_{B_{11}}W_2B_2 + (B_2)T_5(L_{B_{11}}))B_{22}^t + A_{22}^tZ_7 + Z_8R_{B_{22}}] \left(\begin{array}{c} 0 \\ I_{p_1} \end{array} \right), \]

(4.38) \[W_2 = A^tEB^t - A^tCM^tEB^t - A^tSC^tEN^tDB^t - A^tSZ_1R_NDB^t + L_AZ_2 + Z_3R_B, \]

(4.39) \[T_5 = M^tED^t + S^tSC^tEN^t + L_MZ_4 + L_MZ_1R_N + Z_5R_D, \]

and the remaining W_j, T_j, Z_j are arbitrary matrices over \mathbb{H}, p_1 is the column number of A_2, p_2 is the row number of B_1.

Proof. We first prove that the mixed pairs of quaternion matrix Sylvester equations (1.3) has a solution (X, Y, Z) if and only if the following system of quaternion matrix equations

\[
\begin{cases}
A_1X_1 - X_2B_1 = C_1, \\
A_2X_3 - X_2B_2 = C_2, \\
(B_2)X_4 - X_3(A_2) = -(C_2), \\
(B_1)X_4 - X_5(A_1) = -(C_1)
\end{cases}
\]

has a solution. If (1.3) has a solution, say, (X_0, Y_0, Z_0), then (4.40) clearly has a solution $(X_1, X_2, X_3, X_4, X_5) = (X_0, Y_0, Z_0, (Y_0)\phi, (X_0)\phi)$. Conversely, if (4.40) has a solution $(X_1, X_2, X_3, X_4, X_5)$, then

\[(X, Y, Z) = \left(\frac{X_1 + (X_5)\phi}{2}, \frac{X_2 + (X_4)\phi}{2}, \frac{X_3 + (X_3)\phi}{2} \right)\]

is a solution of (1.3). Now we want to solve (4.40).

The main idea for solving (4.40) is that (4.40) has a solution if and only if the systems

\[
\begin{cases}
A_2X_3 - X_2B_2 = C_2, \\
A_1X_1 - X_2B_1 = C_1,
\end{cases}
\]
The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

and

\[
\begin{aligned}
(B_2)_\phi X_4 - X_3 (A_2)_\phi &= -(C_2)_\phi, \\
(B_1)_\phi X_4 - X_5 (A_1)_\phi &= -(C_1)_\phi
\end{aligned}
\]

are solvable, and the X_3 in (4.41) is the same as in (4.42).

It follows from Lemma 4.1 that (4.41) is consistent if and only if

\[
\begin{aligned}
r \left(\begin{array}{cc}
C_1 & A_1 \\
B_1 & 0
\end{array} \right) &= r(A_1) + r(B_1), \\
r \left(\begin{array}{cc}
C_2 & A_2 \\
B_2 & 0
\end{array} \right) &= r(A_2) + r(B_2),
\end{aligned}
\]

or

\[
\begin{aligned}
r \left(\begin{array}{ccc}
C_1 & C_2 & A_1 \\
B_1 & B_2 & 0
\end{array} \right) &= r(A_1, A_2) + r(B_1, B_2),
\end{aligned}
\]

where $B_{11}, C_{11},$ and D_{11} are defined in (4.11). In this case, the general solution to (4.41) can be expressed as

\[
\begin{aligned}
X_3 &= A_1^\dagger C_2 + U_1 B_2 + L_{A_1} W_1, \\
X_2 &= -R_{A_2} C_2 B_2^\dagger + A_2 U_1 + V_1 R_{B_2}, \\
X_1 &= A_1^\dagger (C_1 - R_{A_2} C_2 B_2^\dagger B_1 + A_2 U_1 B_1) + W_4 A_{11} + L_{A_1} W_6,
\end{aligned}
\]

where

\[
\begin{aligned}
U_1 &= B_{11}^\dagger D_{11} C_{11}^\dagger + L_{B_{11}} W_2 + W_3 R_{C_{11}}, \\
V_1 &= -R_{A_1} (C_1 - R_{A_2} C_2 B_2^\dagger B_1 + A_2 U_1 B_1) A_{11}^\dagger + A_1 W_4 + W_5 R_{A_{11}},
\end{aligned}
\]

$A_{11}, B_{11}, C_{11},$ and D_{11} are defined in (4.11), and W_1, \ldots, W_6 are arbitrary matrices over \mathbb{H} with appropriate sizes.

Next we consider (4.42). It follows from Lemma 4.2 that (4.42) is solvable if and only if

\[
\begin{aligned}
r \left(\begin{array}{cc}
-(C_1)_\phi & (B_1)_\phi \\
(A_1)_\phi & 0
\end{array} \right) &= r(A_1)_\phi + r(B_1)_\phi, \\
r \left(\begin{array}{cc}
-(C_2)_\phi & (B_2)_\phi \\
(A_2)_\phi & 0
\end{array} \right) &= r(A_2)_\phi + r(B_2)_\phi,
\end{aligned}
\]

or

\[
\begin{aligned}
r \left(\begin{array}{ccc}
-(C_1)_\phi & (B_1)_\phi \\
-(C_2)_\phi & (B_2)_\phi \\
(A_1)_\phi & 0 \\
(A_2)_\phi & 0
\end{array} \right) &= r \left(\begin{array}{c}
(A_1)_\phi \\
(A_2)_\phi
\end{array} \right) + r \left(\begin{array}{c}
(B_1)_\phi \\
(B_2)_\phi
\end{array} \right),
\end{aligned}
\]
i.e., (4.43) and (4.44). In this case, the general solution to (4.42) can be expressed as

\[(4.47)\]
\[X_3 = (A_2^t C_2 L_{B_2})_\phi + (B_2)_\phi V_2 + T_6 (L_{A_2})_\phi,\]

\[X_4 = -(C_2 B_2^t)_\phi + V_2 (A_2)_\phi + (R_{B_2})_\phi U_2,\]

\[X_5 = -[(A_1)^t (-C_1 + C_2 B_1^t B_1 - A_2 (V_2)_\phi B_1) L_{A_1}]_\phi + (A_{11})_\phi T_1 + T_3 (L_{A_1})_\phi,\]

where

\[V_2 = (C_{11})_\phi D_{22} (B_{11}^t)_\phi + (R_{C_{11}})_\phi T_4 + T_5 (L_{B_{11}})_\phi,\]

\[U_2 = [(-C_1 + C_2 B_1^t B_1 - A_2 (V_2)_\phi B_1) (A_{11})]^t_\phi + T_1 (A_1)_\phi + (R_{A_{11}})_\phi T_2,\]

\[A_{11}, B_{11}, C_{11}, \text{ and } D_{22} \text{ are defined in (4.11) and (4.12), and } T_1, \ldots, T_6 \text{ are arbitrary matrices over } \mathbb{H} \text{ with appropriate sizes.}\]

Equating \(X_3\) in (4.46) and \(X_3\) in (4.47) gives

\[A_{22} \begin{pmatrix} W_1 \\ T_4 \end{pmatrix} + (W_3, T_6) B_{22} + L_{B_{11}} W_2 B_2 - (B_2)_\phi T_5 (L_{B_{11}})_\phi = C_{22},\]

i.e.,

\[(4.48)\]
\[A_{22} \begin{pmatrix} W_1 \\ T_4 \end{pmatrix} + (W_3, T_6) B_{22} + L_{B_{11}} W_2 B_2 - (B_2)_\phi T_5 (L_{B_{11}})_\phi = C_{22},\]

where \(A_{22}, B_{22}, C_{22}\) are defined in (4.12) and (4.13). It follows from Lemma 4.3 that the equation (4.48) is consistent if and only if

\[R_M R_A E = 0, \quad E L_B L_N = 0, \quad R_A E L_D = 0, \quad R_C E L_B = 0.\]

In this case, the general solution to the equation (4.48) can be expressed as

\[\begin{pmatrix} W_1 \\ T_4 \end{pmatrix} = A_{22}^t (C_{22} - L_{B_{11}} W_2 B_2 + (B_2)_\phi T_5 (L_{B_{11}})_\phi) - A_{22}^t Z_7 B_{22} + L_{A_{22}} Z_6,\]

\[(W_3, T_6) = R_{A_{22}} (C_{22} - L_{B_{11}} W_2 B_2 + (B_2)_\phi T_5 (L_{B_{11}})_\phi) B_{22}^t + A_{22} A_{22}^t Z_7 + Z_8 R_{B_{22}},\]

\[W_2 = A^t E B^t - A^t C M^t E B^t - A^t S C^t E N^t D B^t - A^t S Z_1 R_N D B^t + L_A Z_2 + Z_3 R_B,\]

\[T_5 = M^t E D^t + S^t S C^t E N^t + L_M L_S Z_4 + L_M Z_1 R_N + Z_5 R_D,\]

where \(A, B, C, D, E, M, N, S\) are defined in (4.14) and (4.15), \(Z_1, \ldots, Z_7\) are arbitrary matrices over \(\mathbb{H}\).
Now we want to show the equivalence (4.22) ⇔ (4.18)–(4.20). It follows from Lemma 4.4 that
\[R_M R_A E = 0 \iff r(R_A E, R_A C) = r(R_A C) \iff r(E, A, C) = r(A, C) \]
\[\iff r(R_{A_2} C_2 L_{B_{22}}, R_{A_2} L_{B_{11}}, R_{A_2}(B_2)_\phi) = r(R_{A_2} L_{B_{11}}, R_{A_2}(B_2)_\phi) \]
\[(4.49) \iff r \left(\begin{array}{ccc} C_2 & L_{B_{11}} & (B_2)_\phi \\ B_2 & 0 & A_{22} \end{array} \right) = r(L_{B_{11}}, (B_2)_\phi, A_{22}) + r(B_{22}). \]

Note that the systems (4.41) and (4.42) are consistent, under the equalities in (4.45), i.e., (4.43) and (4.44). In this case,
\[X_3^1 := A_2^1 C_2 + B_{11}^1 D_{11}^1 C_{11}^1 B_2 \quad \text{and} \quad X_3^2 := (A_2^1 C_2 L_{B_{22}})_\phi + (B_2)_\phi (C_{11}^1)_\phi D_{22} (B_{11}^1)_\phi \]
are special solutions to (4.41) and (4.42), respectively. Then, we have
\[(4.50) \quad C_{22} = X_3^2 - X_3^1. \]

Substituting (4.50) into (4.49) yields
\[R_M R_A E = 0 \iff r \left(\begin{array}{ccc} X_3^2 - X_3^1 & L_{B_{11}} & (B_2)_\phi \\ B_2 & 0 & A_{22} \end{array} \right) = r(L_{B_{11}}, (B_2)_\phi, A_{22}) + r(B_{22}). \]
\[\iff r \left(\begin{array}{ccc} X_3^2 - X_3^1 & L_{B_{11}} & (B_2)_\phi \\ R_{C_1} B_2 & 0 & 0 \\ R_{(A_2)_\phi} & 0 & 0 \end{array} \right) = r(L_{B_{11}}, (B_2)_\phi, L_{A_2}) + r \left(\begin{array}{ccc} R_{C_1} B_2 \\ (A_2)_\phi \end{array} \right) \]
\[\iff r \left(\begin{array}{cccc} X_3^2 - X_3^1 & I & (B_2)_\phi & 0 \\ B_2 & 0 & 0 & (A_2)_\phi \\ I & 0 & 0 & 0 \\ 0 & A_2 & 0 & 0 \\ 0 & 0 & A_2 & 0 \end{array} \right) = r \left(\begin{array}{cccc} I & (B_2)_\phi & 0 & 0 \\ A_2 & 0 & 0 & A_1 \\ 0 & 0 & A_2 & 0 \end{array} \right) + r \left(\begin{array}{cccc} B_2 & B_1 & 0 \\ I & 0 & (A_2)_\phi \end{array} \right). \]

Similarly, it can be shown that
\[R_C E L_B = 0 \iff (4.19) \quad \text{and} \quad R_A E L_D = 0 \iff (4.20). \]

We remark that both Conditions (2) and (3) in Theorem 4.5 are practical. In fact, the proof of Theorem 4.5 reveals that Condition (2) is the result of applying Lemma 4.4 on Condition (3) and is more straightforward than Condition (3) in terms of checking the solvability of (1.3).
Remark 4.6. We can also give some solvability conditions and general solution to the following system of quaternion matrix equations

\[
\begin{align*}
A_1 X - Y B_1 &= C_1, \\
A_2 Z - Y B_2 &= C_2, \\
X &= X_\phi
\end{align*}
\]

by exchanging \(X\) and \(Z\) in the system (1.3).

Remark 4.7. The study on the \(\eta\)-Hermitian solutions to quaternion matrix equations has drawn more attention in recent years (e.g. [12], [13], [15], [44], [45]).

- As a special case of the mixed pairs of quaternion matrix Sylvester equations (1.3), we can give some necessary and sufficient conditions for the existence of a solution \((X, Y, Z)\) to the systems

\(Z\) is \(\eta\)-Hermitian, i.e.,

\[Z = Z^\eta = -\eta Z^* \eta, \ \eta \in \{i, j, k\}\]

- As another special case of the mixed pairs of quaternion matrix Sylvester equations (1.3), we can give some necessary and sufficient conditions for the existence of a solution \((X, Y, Z)\) to the systems

\(Z\) is \(\xi\)-Hermitian, i.e.,

\[Z = Z^\xi = -\xi Z^* \xi, \ \xi \in \{\sqrt{2}(i + j), \sqrt{2}(i + k), \sqrt{2}(j + k)\}\]

We give two examples to illustrate Theorem 4.5 for the two special cases, respectively.

Example 4.8. Let

\[
A_1 = \begin{pmatrix}
2 - i + j & i + k & 1 + j + k \\
1 + 2i - j & -1 - k & i - j - k \\
1 - 3i + 2j & 1 + i + 2k & 1 - i + 2j + 2k
\end{pmatrix},
\]

\[
B_1 = \begin{pmatrix}
i + 2k & 1 + j - k & j \\
-1 - 2j & i + j + k & k \\
-1 + i - 2j + 2k & 1 + i + 2j + j + k
\end{pmatrix},
\]

\[
A_2 = \begin{pmatrix}
2 + 2j + k & -i + j - k & 1 + 2i + j \\
-1 - k & 1 + k & -2i - j \\
1 + 2j & j & 1
\end{pmatrix},
\]

\[
B_2 = \begin{pmatrix}
i + j & i + k & 1 + 2j \\
-1 + i - j & -1 + i - k & 1 + i - 2j \\
-1 & -1 & i
\end{pmatrix},
\]

\[
C_1 = \begin{pmatrix}
5 - 7i + 11j + 9k & 2 + 8i - j - k & 6 - 6i + 4j - 5k \\
-2 + 7i - 3j & -1 - 4i - 9j + 6k & 3 + 6i \\
17 - 18i + 14j + k & -5 + 14i + 2j - 9k & 3 - 8i - 7k
\end{pmatrix},
\]

\[
C_2 = \begin{pmatrix}
4 - 2i + 11j - 2k & 5 - 4i + 3j + k & -1 - 2i + j + 3k \\
-2 + i - 5j + 2k & -2 + 2j + k & -1 - i - 4j - 2k \\
5 + 3j - 4k & 4 - 7i + 2j - 2k & 4 - i + j - 2k
\end{pmatrix}.
\]
We consider the mixed pairs of quaternion matrix Sylvester equations (1.3), where \(Z \) is \(k \)-Hermitian. Direct computations yield

\[
\begin{align*}
 & r \left(\begin{array}{cc} C_i & A_i \\ B_i & 0 \end{array} \right) = r(A_i) + r(B_i) = \begin{cases} 3, & \text{if } i = 1, \\ 4, & \text{if } i = 2, \end{cases} \\
 & r \left(\begin{array}{ccc} C_1 & C_2 & A_1 \\ B_1 & B_2 & A_2 \end{array} \right) = r(A_1, A_2) + r(B_1, B_2) = 6, \\
 & r \left(\begin{array}{ccc} C_1 & C_2 & A_1 \\ B_1 & B_2 & A_2 \end{array} \right) = r(A_1, A_2) + r(B_1, B_2) = 6, \\
 & r \left(\begin{array}{ccc} C_2 & A_2 \end{array} \right) = r(A_1, A_2) + r(B_1, B_2) = 6, \\
 & r \left(\begin{array}{ccc} C_2 & A_2 \end{array} \right) = 2r(B_2) = 4,
\end{align*}
\]

All the rank equalities in (4.16)–(4.20) hold. Hence, the mixed pairs of quaternion matrix Sylvester equations (1.3) has a solution \((X, Y, Z)\), where \(Z \) is \(k \)-Hermitian. Also, it is easy to show that

\[
X = \begin{pmatrix} 1 + 2i + k & i + j + k & 1 + j - k \\ 1 - 2i + 2j - k & i - j + k & 0 \\ 2 + 2j & 2i + 2k & 1 + j - k \end{pmatrix},
\]

\[
Y = \begin{pmatrix} i + j & 1 + k & 2j \\ 1 + i + j & 1 - 2j & 1 + j + k \\ 1 + i + j & 1 + j + k & 0 \end{pmatrix},
\]

and

\[
Z = Z^{k*} = \begin{pmatrix} 1 + i + j & 1 - k & k \\ 1 + k & i & 0 \\ -k & 0 & j \end{pmatrix}
\]

satisfy (1.3).

Example 4.9. Let

\[
A_1 = \begin{pmatrix} i + j - k & 2 + i + j + k & j \\ -1 + j + k & -1 + 2i - j + k & k \\ -1 + i + 2j & 1 + 3i + 2k & j + k \end{pmatrix},
\]
Zhuo-Heng He, Jianzhen Liu, and Tin-Yau Tam

\[
B_1 = \begin{pmatrix}
1 + i + k & j - 3k & 3i \\
-2 + j + k & i - j + 2k & -2i + j \\
-1 + i + j + 2k & i - k & i + j
\end{pmatrix},
\]

\[
A_2 = \begin{pmatrix}
2i + k & 3 + j + k & 1 - i + j - k \\
1 + i & j & 1 + k \\
k & i + 2j + k & j
\end{pmatrix},
\]

\[
B_2 = \begin{pmatrix}
j & 2i + k & 3 \\
k & -2 - j & 3i \\
j + k & -2 + 2i - j + k & 3 + 3i
\end{pmatrix},
\]

\[
C_1 = \begin{pmatrix}
5 + 2i + 9j + 5k & 2 - j + 7k & -5 + 2i + 5j - 9k \\
8 + 2i - 8j + 9k & -5 + 3i - 8j & -2i + 2j + 7k \\
4 + i + 2j + 11k & -2 + 4i + 2j + 2k & -9 + i + 9j - k
\end{pmatrix},
\]

\[
C_2 = \begin{pmatrix}
-1 - 3i - 8j + 2k & -2 - 3i + 7k & -5 - j + k \\
5 + 6i - 4j - k & 9 - 6i - 2j + 8k & -6 - 8i - 12j - 8k \\
5 + i - 2j + 3k & -4i + 5j - k & -5 - 3i - 2j + 4k
\end{pmatrix}.
\]

Now we consider the mixed pairs of quaternion matrix Sylvester equations (1.3), where \(Z = Z^{\varphi(Z)}(i+j)^* \). Direct computations yield

\[
r \begin{pmatrix}
C_1 & A_1 \\
B_1 & 0
\end{pmatrix} = r(A_1) + r(B_1) = \begin{cases}
3, & \text{if } i = 1, \\
4, & \text{if } i = 2,
\end{cases}
\]

\[
r \begin{pmatrix}
C_1 & C_2 & A_1 & A_2 \\
B_1 & B_2 & 0 & 0
\end{pmatrix} = r(A_1, A_2) + r(B_1, B_2) = 5,
\]

\[
r \begin{pmatrix}
C_1 & C_2 A_2^{\varphi(Z)(i+j)*} - A_2 C_2^{\varphi(Z)(i+j)*} & A_1 & A_2 B_2^{\varphi(Z)(i+j)*} \\
B_1 & B_2 A_2^{\varphi(Z)(i+j)*} & 0 & 0
\end{pmatrix}
= r \left(A_1, A_2 B_2^{\varphi(Z)(i+j)*} \right) + r \left(B_1, B_2 A_2^{\varphi(Z)(i+j)*} \right) = 4,
\]

\[
r \begin{pmatrix}
C_2 A_2^{\varphi(Z)(i+j)*} - A_2 C_2^{\varphi(Z)(i+j)*} & A_2 B_2^{\varphi(Z)(i+j)*} \\
B_2 A_2^{\varphi(Z)(i+j)*} & 0
\end{pmatrix}
= 2r \left(A_2 B_2^{\varphi(Z)(i+j)*} \right) = 2,
\]

\[
r \begin{pmatrix}
C_1 & C_2 A_2^{\varphi(Z)(i+j)*} - A_2 C_2^{\varphi(Z)(i+j)*} & A_1 & A_2 B_2^{\varphi(Z)(i+j)*} \\
0 & -C_1^{\varphi(Z)(i+j)*} & 0 & B_1^{\varphi(Z)(i+j)*} \\
B_1 & B_2 A_2^{\varphi(Z)(i+j)*} & 0 & 0 \\
0 & A_1^{\varphi(Z)(i+j)*} & 0 & 0
\end{pmatrix}
= 2r \left(A_1, A_2 B_2^{\varphi(Z)(i+j)*} \right) = 6.
\]
The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

All the rank equalities in (4.16)–(4.20) hold. Hence, the mixed pairs of quaternion matrix Sylvester equations (1.3) has a solution (X,Y,Z), where

$$Z = Z^{\frac{-1}{2}}(i+j)^* = \begin{pmatrix} 1 + i - j + k & i + 2j & i \\ -2i - j & i - j & j \\ -j & -i & k \end{pmatrix}$$

satisfy (1.3).

5. The solution to system (1.4). In this section, we consider some solvability conditions and the general solution to the mixed pairs of quaternion matrix Sylvester equations (1.4). The following lemma gives the solvability conditions and general solution to the mixed Sylvester matrix equations

$$\begin{align*}
A_1 X_1 - X_2 B_1 &= C_1, \\
A_2 X_2 - X_3 B_2 &= C_2
\end{align*}$$

over \mathbb{C}.

Lemma 5.1. [16] Let $A_i, B_i,$ and C_i ($i = 1, 2$) be given matrices over \mathbb{H}. Set

$$A_{11} = R_{(A_2 A_1)} A_2, \quad B_{11} = R_{B_1} L_{B_2}, \quad C_{11} = R_{(A_2 A_1)} (A_2 R_{A_1} C_1 B_1^\dagger + C_2) L_{B_2}.$$

Then the following statements are equivalent:

1. The mixed generalized Sylvester quaternion matrix equations (5.51) is solvable.

2.

$$R_{A_1} C_1 L_{B_1} = 0, \quad R_{A_{11}} C_{11} = 0, \quad C_{11} L_{B_{11}} = 0.$$

3.

$$r \begin{pmatrix} C_1 & A_1 \\ B_1 & 0 \end{pmatrix} = r(A_1) + r(B_1), \quad r \begin{pmatrix} C_2 & A_2 \\ B_2 & 0 \end{pmatrix} = r(A_2) + r(B_2),$$

$$r \begin{pmatrix} A_2 A_1 & A_2 C_1 + C_2 B_1 \\ 0 & B_2 B_1 \end{pmatrix} = r(A_2 A_1) + r(B_2 B_1).$$

If any of the above condition is satisfied, then the general solution to (5.51) can be expressed as

$$X_1 = A_1^\dagger C_1 + U_1 B_1 + L_{A_1} W_1,$$
Then we have the following theorem with two solvability conditions and the general solution to (1.4).

Theorem 5.2. Let $A_i, B_i,$ and C_i ($i = 1, 2$) be given matrices over \mathbb{H}. Then the following statements are equivalent:

1. The mixed pairs of quaternion matrix Sylvester equations (1.4) has a solution (X, Y, Z).

2. The following relations hold:

\[
\begin{align*}
X_2 &= -R_{A_i}C_1B_1^\dagger + A_1U_1 + V_1R_{B_1}, \\
X_3 &= -R_{(A_2A_1)}(C_2 + A_2R_{A_i}C_1B_1^\dagger - A_2V_1R_{B_1})B_2^\dagger + A_2A_1W_4 + W_5R_{B_2},
\end{align*}
\]

where

\[
V_1 = A_{11}^\dagger C_{11}B_{11}^\dagger + L_{A_{11}}W_2 + W_3R_{B_{11}},
\]

\[
U_1 = (A_2A_1)^\dagger(C_2 + A_2R_{A_i}C_1B_1^\dagger - A_2V_1R_{B_1}) + W_4B_2 + L_{(A_2A_1)}W_6,
\]

and W_1, \ldots, W_6 are arbitrary matrices over \mathbb{H} with appropriate sizes.

Using the similar method, we can extend Lemma 5.1 to \mathbb{H}. For simplicity, put

\[
\begin{align*}
A_{11} &= R_{(A_2A_1)}A_2, \quad B_{11} = R_{B_1}L_{B_2}, \quad C_{11} = R_{(A_2A_1)}(A_2R_{A_i}C_1B_1^\dagger + C_2)L_{B_2}, \\
A_{22} &= (B_1L_{(B_2B_1)})_{\phi}, \quad B_{22} = (R_{A_i}L_{A_2})_{\phi}, \quad C_{22} = -[R_{A_1}(C_1 + A_2C_2L_{B_2B_1})L_{(B_2B_1)})_{\phi}, \\
A_{33} &= (A_2A_1, (R_{B_2})_{\phi}), \quad B_{33} = R_{B_{11}}R_{B_2}, \\
C_{33} &= -[C_2B_1^\dagger + A_2(C_1 + A_2C_2L_{B_2B_1})(B_2B_1)]_{\phi} + R_{(A_2A_1)}(A_2R_{A_i}C_1B_1^\dagger + C_2 - A_2A_1C_1B_1^\dagger R_{B_1})B_2^\dagger,
\end{align*}
\]

\[
\begin{align*}
A &= R_{A_{33}}A_{11}, \quad B = B_{33}(R_{A_{33}})_{\phi}, \quad C = R_{A_{33}}(R_{(B_2B_1)})_{\phi}, \quad D = (R_{A_{33}}A_2)_{\phi}, \\
E &= R_{A_{33}}C_{33}(R_{A_{33}})_{\phi}, \quad M = R_AC, \quad N = DL_{B}, \quad S = CL_M.
\end{align*}
\]

Then we have the following theorem with two solvability conditions and the general solution to (1.4).

Theorem 5.2. Let $A_i, B_i,$ and C_i ($i = 1, 2$) be given matrices over \mathbb{H}. Then the following statements are equivalent:

1. The mixed pairs of quaternion matrix Sylvester equations (1.4) has a solution (X, Y, Z).

2. The following relations hold:

\[
\begin{align*}
r \left(\begin{array}{cc}
C_i & A_i \\
B_i & 0
\end{array} \right) &= r(A_i) + r(B_i), \quad i = 1, 2,
\end{align*}
\]
The general ϕ-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations

\begin{align}
(5.59) & \quad r \begin{pmatrix} A_2 A_1 & A_2 C_1 + C_2 B_1 \\ 0 & B_2 B_1 \end{pmatrix} = r(A_2 A_1) + r(B_2 B_1), \\
(5.60) & \quad r \begin{pmatrix} (B_2)\phi A_2 C_1 + (B_2)\phi C_2 B_1 - (C_2)\phi B_2 B_1 \\ (A_2)\phi B_2 B_1 \end{pmatrix} = r((B_2)\phi A_2 A_1) + r((A_2)\phi B_2 B_1), \\
(5.61) & \quad r \begin{pmatrix} (B_2 B_1)\phi A_2 C_1 + (B_2 B_1)\phi C_2 A_1 - (C_2 B_1)\phi A_2 A_1 - (B_2 C_1)\phi A_2 A_1 \\ (A_2 A_1)\phi B_2 B_1 \end{pmatrix} = 2r((A_2 A_1)\phi B_2 B_1), \\
(5.62) & \quad r \begin{pmatrix} (B_2)\phi C_2 - (C_2)\phi B_2 \\ (A_2)\phi B_2 \end{pmatrix} = 2r((A_2)\phi B_2). \\
(3) & \quad R_A C_1 L_{B_1} = 0, \quad R_{A_1} C_{11} = 0, \quad C_{11} L_{B_{11}} = 0, \\
(5.64) & \quad R_M R_A E = 0, \quad R_C E L_B = 0, \quad R_A E L_D = 0.
\end{align}

The general solution to (1.4) can be expressed as

\begin{align}
(5.65) & \quad X = \frac{X_1 + (X_5)\phi}{2}, \quad Y = \frac{X_2 + (X_4)\phi}{2}, \quad Z = Z\phi = \frac{X_3 + (X_3)\phi}{2}, \\
(5.66) & \quad X_1 = A_1^\dagger C_1 + U_1 B_1 + L_{A_1} W_1, \\
(5.67) & \quad X_2 = -R_{A_1} C_1 B_1^\dagger + A_1 U_1 + V_1 R_{B_1}, \\
(5.68) & \quad X_4 = (A_2^\dagger C_2 L_{B_2})\phi + (B_2)\phi U_2 + V_2 (L_{A_2})\phi, \\
(5.69) & \quad X_5 = [A_1^\dagger (C_1 + A_2^\dagger C_2 L_{B_2} B_1 + L_{A_2} (V_2)\phi B_1) L_{(B_2 B_1)}]\phi - (B_2 B_1)\phi T_4 + T_5 (L_{A_1})\phi, \\
(5.70) & \quad X_3 = -R_{(A_2 A_1)} (C_2 + A_2 R_{A_1} C_1 B_1^\dagger - A_2 V_1 R_{B_1}) B_2^\dagger + A_2 A_1 W_4 + W_5 R_{B_2}, \\
(5.71) & \quad X_4 = -(C_2 B_2^\dagger)\phi + U_2 (A_2)\phi - (R_{B_2})\phi T_1, \\
(5.72) & \quad V_1 = A_{11}^\dagger C_{11} B_{11}^\dagger + L_{A_{11}} W_2 + W_3 R_{B_{11}},
\end{align}
(5.73) \[U_1 = (A_2 A_1)^\dagger (C_2 + A_2 R_{A_1} B_1^T - A_2 V_1 R_{B_1}) + W_4 B_2 + L_{(A_2 A_1)} W_6, \]

(5.74) \[V_2 = A_{22}^T C_{22} B_{22}^T + L_{A_{22}} T_2 + T_3 R_{B_{22}}, \]

(5.75) \[U_2 = -[(C_1 + A_1^T C_2 L_{B_2} B_1 + L_{A_1}(V_2) B_1) (B_2 B_1)]_\phi - T_4 (A_1)_\phi - (R_{(B_2 B_1)})_\phi T_6, \]

(5.76) \[W_4 = (I_{p_1}, 0)[A_{33}^T (C_{33} - A_{11} W_3 B_{33} - (R_{(B_2 B_1)})_\phi T_6 (A_2)_\phi - A_{33}^T Z_7 (A_{33})_\phi + L_{A_{33}} Z_6], \]

(5.77) \[T_1 = (0, I_{p_2})[A_{33}^T (C_{33} - A_{11} W_3 B_{33} - (R_{(B_2 B_1)})_\phi T_6 (A_2)_\phi - A_{33}^T Z_7 (A_{33})_\phi + L_{A_{33}} Z_6]. \]

(5.78) \[T_4 = [R_{A_{33}} (C_{33} - A_{11} W_3 B_{33} - (R_{(B_2 B_1)})_\phi T_6 (A_2)_\phi (A_{33})_\phi + A_{33} A_{33}^T Z_7 + Z_8 (L_{A_{33}}_\phi)] \begin{pmatrix} I_{p_1} \\ 0 \end{pmatrix}, \]

(5.79) \[W_5 = [R_{A_{33}} (C_{33} - A_{11} W_3 B_{33} - (R_{(B_2 B_1)})_\phi T_6 (A_2)_\phi (A_{33})_\phi + A_{33} A_{33}^T Z_7 + Z_8 (L_{A_{33}}_\phi)] \begin{pmatrix} 0 \\ I_{p_2} \end{pmatrix}, \]

(5.80) \[W_3 = A^T E B^\dagger - A^T C M^\dagger E B^\dagger - A^T S C^\dagger E N^\dagger D B^\dagger - A^T S Z_1 R N D B^\dagger + L_A Z_2 + Z_3 R_B, \]

(5.81) \[T_6 = M^\dagger E D^\dagger + S^\dagger S C^\dagger E N^\dagger + L_M L_S Z_4 + L_M Z_1 R_N + Z_5 R_D, \]

and the remaining \(W_j, T_j, Z_j \) are arbitrary matrices over \(\mathbb{H} \), \(p_1 \) is the column number of \(A_1 \), \(p_2 \) is the row number of \(B_2 \).

Proof. The proof is similar to that for Theorem 4.5. It can be shown that (1.4) has a solution \((X, Y, Z)\) if and only if the following system of quaternion matrix equations

(5.82) \[
\begin{align*}
A_1 X - X_2 B_1 &= C_1, \\
A_2 X_2 - X_3 B_2 &= C_2, \\
(B_2)_\phi X_3 - X_4 (A_2)_\phi &= -(C_2)_\phi, \\
(B_1)_\phi X_4 - X_5 (A_1)_\phi &= -(C_1)_\phi
\end{align*}
\]

has a solution.

Remark 5.3. We can also give some solvability conditions and general solution to the following system of quaternion matrix equations

\[
\begin{align*}
A_1 X - Y B_1 &= C_1, \\
A_2 Y - Z B_2 &= C_2,
\end{align*}
\]

by taking \(\phi \) to the first and second matrix equations in (1.4).
Based on Remark 4.7, we can also give two examples with respect to the two special cases.

Example 5.4. Given the quaternion matrices:

\[
A_1 = \begin{pmatrix}
2i + j + k & -1 + j - k & j \\
-2 - j + k & -i + j + k & k \\
2 + i + 2j & -1 + i - 2k & j - k
\end{pmatrix},
\]

\[
B_1 = \begin{pmatrix}
i + 2j + 3k & i & 1 + k \\
i + j + 3j & i + k & 2 + j + k \\
1 + j & k & 1 + j
\end{pmatrix},
\]

\[
A_2 = \begin{pmatrix}
1 + k & i + j - k & i + 2j + k \\
i - j & -1 + j + k & -1 - j + 2k \\
2 + 2k & 2i + 2j - 2k & 2i + 4j + 2k
\end{pmatrix},
\]

\[
B_2 = \begin{pmatrix}
i + 2j + k & 1 + j - k & -1 + j \\
-1 & i + j & -i \\
1 + j & -i + k & i
\end{pmatrix},
\]

\[
C_1 = \begin{pmatrix}
2 - 9i - 4j & -3 - j + 6k & -3 - i + k - 6k \\
6 - 6i - 7j - 8k & -3 - 7i - 4j - 3k & -2 - 7i + 7j - 9k \\
5 - 6i - 8j + 5k & 3i + 8k & -2 + 5i - 10j - 9k
\end{pmatrix},
\]

\[
C_2 = \begin{pmatrix}
5 + 3i - j & -7 - 5i & -5 + 6i + 2j + 4k \\
-5 + i - 8j - 3k & 1 - 6i - 4j + 4k & -2 - 7i - 8j + 3k \\
3 + 7i + j + 5k & -9 - 7i + 6j - k & -14 + 5i + 5j + 9k
\end{pmatrix}.
\]

Direct computations yield

\[
r \begin{pmatrix}
C_i \\
B_i
\end{pmatrix} = r(A_i) + r(B_i) = \begin{cases}
3, \text{ if } i = 1, \\
4, \text{ if } i = 2,
\end{cases}
\]

\[
r \begin{pmatrix}
A_2A_1 & A_2C_1 + C_2B_1 \\
0 & B_2B_1
\end{pmatrix} = r(A_2A_1) + r(B_2B_1) = 3,
\]

\[
r \begin{pmatrix}
(B_2)\ast A_2C_1 + (B_2)\ast C_2B_1 - (C_2)\ast B_2B_1 \\
(B_2)\ast B_2B_1
\end{pmatrix} = r((B_2)\ast A_2A_1) + r((A_2)\ast B_2B_1) = 2,
\]

\[
r \begin{pmatrix}
(B_2B_1)\ast A_2C_1 + (B_2B_1)\ast C_2A_1 - (C_2B_1)\ast B_2B_1 \\
(A_2A_1)\ast B_2B_1
\end{pmatrix}
= 2r((A_2A_1)\ast B_2B_1) = 2,
\]
All the rank equalities in (5.58)–(5.62) hold. Hence, (1.4) has a solution \((X,Y,Z)\), where \(Z\) is \(j\)-Hermitian. It is easy to show that

\[
X = \begin{pmatrix}
i + 2j & 1 + j + 2k & i \\
-1 & j & 1 + k \\
-1 + i + 2k & 1 & 1 + i + 3j
\end{pmatrix},
\]

\[
Y = \begin{pmatrix}
2 - k & -1 + 2j & i + j + k \\
1 + i + j + k & 1 & j \\
1 - i + j & 2j & 1 + 2j + k
\end{pmatrix},
\]

and

\[
Z = Z^j = \begin{pmatrix}
1 + i + k & 2 + j & i \\
2 - j & i & 0 \\
i & 0 & k
\end{pmatrix}
\]

satisfy (1.4).

Example 5.5. Let

\[
A_1 = \begin{pmatrix}
2i + j & 1 + k & 2 - i \\
-2 - k & i - j & 1 + 2i
\end{pmatrix}, \quad B_1 = \begin{pmatrix}
1 + i + 3k & j & 1 \\
0 & 1 + 2j & k
\end{pmatrix},
\]

\[
A_2 = \begin{pmatrix}
1 + i + k & -2i + k \\
-1 + i - j & 2 - j
\end{pmatrix}, \quad B_2 = \begin{pmatrix}
1 + 2i + j + k & 1 + j - k \\
-2 + i - j + k & i + j + k
\end{pmatrix},
\]

\[
C_1 = \begin{pmatrix}
-1 - 5i + j + 2k & 5i - 4j - k & -1 + 3j - k \\
2i - 3j - 2k & -7i - k & -1 - i + j + k
\end{pmatrix},
\]

\[
C_2 = \begin{pmatrix}
1 - 4i + 10j + 5k & 1 - i - j + 4k \\
-3 - 2i + 7j + 4k & -8i - 2j + 3k
\end{pmatrix}.
\]

Now we consider (1.4), where \(Z = Z^{\frac{\pi}{2}(j+k)^*}\). Direct computations yield

\[
r \left(\begin{pmatrix}
C_i \\
B_i
\end{pmatrix} \right) = r(A_i) + r(B_i) = \begin{cases}3, & \text{if } i = 1, \\
2, & \text{if } i = 2,
\end{cases}
\]

\[
r \left(\begin{pmatrix}
A_2A_1 \\
0 \\
A_2C_1 + C_2B_1
\end{pmatrix} \right) = r(A_2A_1) + r(B_2B_1) = 2,
\]

\[
r \left(\begin{pmatrix}
(B_2)^{\frac{\pi}{2}(j+k)^*}A_2C_1 + (B_2)^{\frac{\pi}{2}(j+k)^*}C_2B_1 - (C_2)^{\frac{\pi}{2}(j+k)^*}B_2B_1 \\
(A_2)^{\frac{\pi}{2}(j+k)^*}B_2B_1
\end{pmatrix} \right) = r((B_2)^{\frac{\pi}{2}(j+k)^*}A_2A_1) + r((A_2)^{\frac{\pi}{2}(j+k)^*}B_2B_1) = 0.
\]
The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

\[r \begin{pmatrix} \Omega & (B_2 B_1)^{\frac{1}{2}}(j+k)^* A_2 A_1 \\ (A_2 A_1)^{\frac{1}{2}}(j+k)^* B_2 B_1 & 0 \end{pmatrix} = 2r((A_2 A_1)^{\frac{1}{2}}(j+k)^* B_2 B_1) = 0, \]

\[r \begin{pmatrix} (B_2)^{\frac{1}{2}}(j+k)^* C_2 - (C_2)^{\frac{1}{2}}(j+k)^* B_2 & (B_2)^{\frac{1}{2}}(j+k)^* A_2 \\ (A_2)^{\frac{1}{2}}(j+k)^* B_2 & 0 \end{pmatrix} = 2r((A_2)^{\frac{1}{2}}(j+k)^* B_2) = 0, \]

where

\[\Omega = (B_2 B_1)^{\frac{1}{2}}(j+k)^* A_2 C_1 + (B_2 B_1)^{\frac{1}{2}}(j+k)^* C_2 A_1 - (C_2 B_1)^{\frac{1}{2}}(j+k)^* A_2 A_1 - (B_2 C_1)^{\frac{1}{2}}(j+k)^* A_2 A_1. \]

All the rank equalities in (5.58)–(5.62) hold. Hence, (1.4) has a solution (X, Y, Z), where $Z = Z^{\frac{1}{2}}(j+k)^*$. It is easy to show that

\[X = \begin{pmatrix} i + j + 2k & 2 + 2j + k & -1 \\ 1 - k & -1 - 2j & i + j \\ 1 + i + j + k & 1 + k & -1 + i + j \end{pmatrix}, \]

\[Y = \begin{pmatrix} 1 + i + 2j - k & 1 + 2i + k \\ k & 1 \end{pmatrix}, \]

and

\[Z = Z^{\frac{1}{2}}(j+k)^* = \begin{pmatrix} i + j - k & j \\ -k & 1 + 2j - 2k \end{pmatrix}. \]

satisfy (1.4).

6. Conclusions. We have derived some practical necessary and sufficient conditions for the existence of a solution (X, Y, Z) (with a ϕ-Hermitian Z) to the mixed pairs of quaternion matrix Sylvester equations (1.3) and (1.4) and presented general solutions to (1.3) and (1.4) when they are solvable. Moreover, some numerical examples have been provided.

A more challenging problem is to give the solvability conditions and general solutions to the mixed pairs of quaternion matrix Sylvester equations (1.3) and (1.4), where all of the unknowns X, Y, Z are ϕ-Hermitian.

Acknowledgment. The authors thank Professor Roger Horn and the anonymous referee for their valuable suggestions that led to the improvement of the presentation in this paper.

REFERENCES

The General ϕ-Hermitian Solution to Mixed Pairs of Quaternion Matrix Sylvester Equations

