THE COMBINATORIAL INVERSE EIGENVALUE PROBLEM II: ALL CASES FOR SMALL GRAPHS

WAYNE BARRETT†, CURTIS NELSON‡, JOHN SINKOVIC§, AND TIANYI YANG¶

Abstract. Let G be a simple undirected graph on n vertices and let $S(G)$ be the class of real symmetric $n \times n$ matrices whose nonzero off-diagonal entries correspond to the edges of G. Given $2n-1$ real numbers $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$, and a vertex v of G, the question is addressed of whether or not there exists $A \in S(G)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ such that $A(v)$ has eigenvalues μ_1, \ldots, μ_{n-1}, where $A(v)$ denotes the matrix with vth row and column deleted. A complete solution can be given for the path on n vertices with v a pendant vertex and also for the star on n vertices with v the dominating vertex. The main result is a complete solution to this "λ, μ" problem for all connected graphs on 4 vertices.

Key words. Interlacing inequalities, Inverse eigenvalue problem, Symmetric matrix.

AMS subject classifications. 05C50, 15A42, 15B57.

†Received by the editors on May 30, 2013. Accepted for publication on September 19, 2014. Handling Editor: Bryan L. Shader.

1Department of Mathematics, Brigham Young University, Provo, UT 84602, USA (wayne@math.byu.edu).
2Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA (curtisgn@gmail.com).
3Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA (johnsinkovic@gmail.com).
4Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA (tianyi.robert.yang@gmail.com).