RANK DROPS OF RECURRENCE MATRICES∗

SEBASTIAN J. BOZLEE†

Abstract. A recurrence matrix is a matrix whose terms are sequential members of a linear homogeneous recurrence sequence of order \(k \) and whose dimensions are both greater than or equal to \(k \). In this paper, the ranks of recurrence matrices are determined. In particular, it is shown that the rank of such a matrix differs from the previously found upper bound of \(k \) in only two situations: When \((a_j)\) satisfies a recurrence relation of order less than \(k \), and when the \(n \)th powers of distinct eigenvalues of \((a_j)\) coincide.

Key words. Linear recurrence relations, Matrix rank, Recurrence matrices.

AMS subject classifications. 15A03, 65Q30.

∗Received by the editors on July 1, 2014. Accepted for publication on June 28, 2015. Handling Editor: Bryan L. Shader.
†Department of Mathematics, University of Portland, Portland, Oregon 97203-5798, USA, and Department of Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309-0395, USA (sebastian.bozlee@colorado.edu).