•  
  •  
 

Keywords

Power symmetric matrices, unitary equivalence to transpose, partial transpose, entanglement, generalized Choi map, quantum dynamical semigroup.

Abstract

Power symmetric stochastic matrices introduced by R. Sinkhorn (1981) and their generalization by R.B. Bapat, S.K. Jain and K. Manjunatha Prasad (1999) have been utilized to give positive block matrices with trace one possessing positive partial transpose, the so-called PPT states. Another method to construct such PPT states is given, it uses the form of a matrix unitarily equivalent to to its transpose obtained by S.R. Garcia and J.E. Tener (2012). Evolvement or suppression of separability or entanglement of various levels for a quantum dynamical semigroup of completely positive maps has been studied using Choi-Jamiolkowsky matrix of such maps and the famous Hordeckis criteria (1996). A Trichotomy Theorem has been proved, and examples have been given that depend mainly on generalized Choi maps and clearly distinguish the levels of entanglement breaking.

abs_vol29_pp156-193.pdf (25 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.