•  
  •  
 

Keywords

Irreducible eventually nonnegative, Strongly eventually nonnegative, Eventually reducible, Eventually r-cyclic, Cyclic index, Frobenius collection, Frobenius Jordan multiset, Jordan multiset, Jordan form

Abstract

A square complex matrix A is eventually nonnegative if there exists a positive integer k_0 such that for all k ≥ k_0, A^k ≥ 0; A is strongly eventually nonnegative if it is eventually nonnegative and has an irreducible nonnegative power. It is proved that a collection of elementary Jordan blocks is a Frobenius Jordan multiset with cyclic index r if and only if it is the multiset of elementary Jordan blocks of a strongly eventually nonnegative matrix with cyclic index r. A positive answer to an open question and a counterexample to a conjecture raised by Zaslavsky and Tam are given. It is also shown that for a square complex matrix A with index at most one, A is irreducible and eventually nonnegative if and only if A is strongly eventually nonnegative.

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.