Equation, System of linear equations, Generalised inverse, Inner inverse, Equation over ring, Operator equation


This paper gives necessary and sufficient conditions for the existence of a common solution, and two expressions for the general common solution of the equation pair a_1xb_1 = c1, a_2xb_2 = c2, via a simpler equation p_1xp_2 + q_1yq_2=c, when each element belongs to an associative ring with unit. The paper also considers the same problem in the setting of a strongly ∗-reducing ring. Solutions of the generalized Sylvester equation are also presented. Both the solvability conditions and the expression for the general solution are given in terms of inner inverses. The paper uses the results obtained in the ring setting to give equivalent results for operators between Banach spaces, thus also recovering some of the well known matrix results.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.