•  
  •  
 

Keywords

Signless Laplacian; Spectral radius; Planar graph

Abstract

The signless Laplacian spectral radius of a graph is the largest eigenvalue of its signless Laplacian. In this paper, we prove that the graph $K_{2}\nabla P_{n-2}$ has the maximal signless Laplacian spectral radius among all planar graphs of order $n\geq 456$.

abs_vol30_pp795-811.pdf (27 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.