•  
  •  
 

Keywords

Gauss-Seidel iterative methods; Convergence; General H-matrices

Abstract

It is well known that as a famous type of iterative methods in numerical linear algebra, Gauss-Seidel iterative methods are convergent for linear systems with strictly or irreducibly diagonally dominant matrices, invertible H−matrices (generalized strictly diagonally dominant matrices) and Hermitian positive definite matrices. But, the same is not necessarily true for linear systems with non-strictly diagonally dominant matrices and general H−matrices. This paper firstly proposes some necessary and sufficient conditions for convergence on Gauss-Seidel iterative methods to establish several new theoretical results on linear systems with nonstrictly diagonally dominant matrices and general H−matrices. Then, the convergence results on preconditioned Gauss-Seidel (PGS) iterative methods for general H−matrices are presented. Finally, some numerical examples are given to demonstrate the results obtained in this paper.

abs_vol30_pp843-870.pdf (29 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.