•  
  •  
 

Keywords

Spectrum, Kite graph, Lagrange series, zeros

Abstract

A Lagrange series around adjustable expansion points to compute the eigenvalues of graphs, whose characteristic polynomial is analytically known, is presented. The computations for the kite graph P_nK_m, whose largest eigenvalue was studied by Stevanovic and Hansen [D. Stevanovic and P. Hansen. The minimum spectral radius of graphs with a given clique number. Electronic Journal of Linear Algebra, 17:110–117, 2008.], are illustrated. It is found that the first term in the Lagrange series already leads to a better approximation than previously published bounds.

abs_vol30_pp934-943.pdf (26 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.