•  
  •  
 

Keywords

Graph, Adjacency matrix, Multiplicity, Downer vertex, Neutral vertex, Parter vertex, Cut vertex, Kronecker product

Abstract

Given a simple graph G, let A(G) be its adjacency matrix. A principal submatrix of A(G) of order one less than the order of G is the adjacency matrix of its vertex deleted subgraph. It is well-known that the multiplicity of any eigenvalue of A(G) and such a principal submatrix can differ by at most one. Therefore, a vertex v of G is a downer vertex (neutral vertex, or Parter vertex) with respect to a fixed eigenvalue μ if the multiplicity of μ in A(G)−v goes down by one (resp., remains the same, or goes up by one). In this paper, we consider the problems of characterizing these three types of vertices under various constraints imposed on graphs being considered, on vertices being chosen and on eigenvalues being observed. By assigning weights to edges of graphs, we generalizeour results to weighted graphs, or equivalently to symmetric matrices.

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.