•  
  •  
 

Keywords

Tree, Eigenvalues, Hermitian matrices, Multiplicity, Parter vertex

Abstract

For an Hermitian matrix whose graph is a tree and for a given eigenvalue having Parter vertices, the possibilities for the multiplicity are considered. If V = {v_1, . . . , v_k} is a fragmenting Parter set in a tree relative to the eigenvalue , and T_{i+1} is the component of T−{v_1, v_2, . . . , v_i} in which v_{i+1} lies, it is shown that \sum_{i}^K N_i=m_A(\lambda)+2k−1, in which N_i is the number of components of T_i−v_i in which lambda is an eigenvalue. This identity is applied to make several observations, including about when a set of strong Parter vertices leaves only 3 components with \lambda and about multiplicities in binary trees. Furthermore, it is shown that one can construct an Hermitian matrix whose graph is a tree that has a strong Parter set V such that |V | = k for each k in 1 <= k<= m − 1 for given multiplicity m >= 2 of an eigenvalue lambda. Finally, some examples are given, in which the notion of afragmenting Parter set is used.

abs_vol30_pp964-973.pdf (32 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.