•  
  •  
 

Keywords

Maximum degree, Optimizing, Spectral radius, Tree

Abstract

The spectral radius of a graph is the largest eigenvalue of the adjacency matrix of the graph. Let $T^*(n,\Delta ,l)$ be the tree which minimizes the spectral radius of all trees of order $n$ with exactly $l$ vertices of maximum degree $\Delta $. In this paper, $T^*(n,\Delta ,l)$ is determined for $\Delta =3$, and for $l\le 3$ and $n$ large enough. It is proven that for sufficiently large $n$, $T^*(n,3,l)$ is a caterpillar with (almost) uniformly distributed legs, $T^*(n,\Delta ,2)$ is a dumbbell, and $T^*(n,\Delta ,3)$ is a tree consisting of three distinct stars of order $\Delta $ connected by three disjoint paths of (almost) equal length from their centers to a common vertex. The unique tree with the largest spectral radius among all such trees is also determined. These extend earlier results of Lov\' asz and Pelik\'an, Simi\' c and To\u si\' c, Wu, Yuan and Xiao, and Xu, Lin and Shu.

vol31_pp335-361.pdf (288 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.