•  
  •  
 

Keywords

Semiring, semimodule, upper ideal, linear preserver, term rank, star cover number.

Abstract

Let $\S$ denote the set of symmetric matrices over some semiring, $\s$. A line of $A\in\S$ is a row or a column of $A$. A star of $A$ is the submatrix of $A$ consisting of a row and the corresponding column of $A$. The term rank of $A$ is the minimum number of lines that contain all the nonzero entries of $A$. The star cover number is the minimum number of stars that contain all the nonzero entries of $A$. This paper investigates linear operators that preserve sets of symmetric matrices of specified term rank and sets of symmetric matrices of specific star cover numbers. Several equivalences to the condition that $T$ preserves the term rank of any matrix are given along with characterizations of a couple of types of linear operators that preserve certain sets of matrices defined by the star cover number that do not preserve all term ranks.

abs_vol31_pp549-564.pdf (26 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.