•  
  •  
 

Keywords

Distance Laplacian matrix, Laplacian matrix, largest eigenvalue, multiplicity of eigenvalues

Abstract

In this note, the graphs of order n having the largest distance Laplacian eigenvalue of multiplicity n −2 are characterized. In particular, it is shown that if the largest eigenvalue of the distance Laplacian matrix of a connected graph G of order n has multiplicity n − 2, then G = S_n or G = K_(p,p), where n = 2p. This resolves a conjecture proposed by M. Aouchiche and P. Hansen in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak Mathematical Journal, 64(3):751–761, 2014.]. Moreover, it is proved that if G has P_5 as an induced subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of G is less than n − 3.

abs_vol31_pp60-68.pdf (33 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.