Home > ELA > Vol. 31 (2016)

#### Keywords

Tree sign pattern, Potentially nilpotent pattern, Spectrally arbitrary pattern, Inertially arbitrary pattern.

#### Abstract

An $n\times n$ sign pattern ${\cal A}$ is said to be potentially nilpotent (PN) if there exists some nilpotent real matrix $B$ with sign pattern ${\cal A}$. In [M.~Arav, F.~Hall, Z.~Li, K.~Kaphle, and N.~Manzagol.Spectrally arbitrary tree sign patterns of order $4$, {\em Electronic Journal of Linear Algebra}, 20:180--197, 2010.], the authors gave some open questions, and one of them is the following: {\em For the class of $4 \times 4$ tridiagonal sign patterns, is PN (together with positive and negative diagonal entries) equivalent to being SAP?}\ In this paper, a positive answer for this question is given.

#### Recommended Citation

Gao, Yubin and Shao, Yanling.
(2016),
"Potentially nilpotent tridiagonal sign patterns of order 4",
*Electronic Journal of Linear Algebra*,
Volume 31, pp. 706-721.

DOI: http://dx.doi.org/10.13001/1081-3810.3075