Article Title

Eventual Cone Invariance


Eventually nonnegative matrix, exponentially nonnegative matrix, Perron-Frobenius, proper cone


Eventually nonnegative matrices are square matrices whose powers become and remain (entrywise) nonnegative. Using classical Perron-Frobenius theory for cone preserving maps, this notion is generalized to matrices whose powers eventually leave a proper cone K ⊂ R^n invariant, that is, A^mK ⊆ K for all sufficiently large m. Also studied are the related notions of eventual cone invariance by the matrix exponential, as well as other generalizations of M-matrix and dynamical system notions.

abs_vol32_pp204-216.pdf (115 kB)
Abstract in PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.