•  
  •  
 

Keywords

Quantum graph parameters, Trace nonnegative polynomials, Copositive cone, Chromatic number, Quantum entanglement, Nonlocal games, Von Neumann algebra

Abstract

We investigate structural properties of the completely positive semidefinite cone $\mathcal{CS}_+$, consisting of all the $n \times n$ symmetric matrices that admit a Gram representation by positive semidefinite matrices of any size. This cone has been introduced to model quantum graph parameters as conic optimization problems. Recently it has also been used to characterize the set $\mathcal Q$ of bipartite quantum correlations, as projection of an affine section of it. We have two main results concerning the structure of the completely positive semidefinite cone, namely about its interior and about its closure. On the one hand we construct a hierarchy of polyhedral cones covering the interior of $\mathcal{CS}_+$, which we use for computing some variants of the quantum chromatic number by way of a linear program. On the other hand we give an explicit description of the closure of the completely positive semidefinite cone by showing that it consists of all matrices admitting a Gram representation in the tracial ultraproduct of matrix algebras.

abs_vol32_pp15-40.pdf (117 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.