•  
  •  
 

Keywords

matrix, determinant, graph, Lights Out, Fibonacci polynomials

Abstract

The game LIGHTS OUT! is played on a 5 by 5 square grid of buttons; each button may be on or off. Pressing a button changes the on/o state of the light of the button pressed and of all its vertical and horizontal neighbors. Given an initial configuration of buttons that are on, the object of the game is to turn all the lights out. The game can be generalized to arbitrary graphs. In this paper, Cartesian Product graphs (that is, graphs of the form G\box H, where G and H are arbitrary finite, simple graphs) are investigated. In particular, conditions for which GH is universally solvable (every initial configuration of lights can be turned out by a finite sequence of button presses), using both closed neighborhood switching and open neighborhood switching, are provided.

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.