•  
  •  
 

Keywords

Quaternion, Sylvester-type equations, Moore-Penrose inverse, Involution, $\phi$-Hermitian solution, Rank

Abstract

Let $\mathbb{H}^{m\times n}$ be the space of $m\times n$ matrices over $\mathbb{H}$, where $\mathbb{H}$ is the real quaternion algebra. Let $A_{\phi}$ be the $n\times m$ matrix obtained by applying $\phi$ entrywise to the transposed matrix $A^{T}$, where $A\in\mathbb{H}^{m\times n}$ and $\phi$ is a nonstandard involution of $\mathbb{H}$. In this paper, some properties of the Moore-Penrose inverse of the quaternion matrix $A_{\phi}$ are given. Two systems of mixed pairs of quaternion matrix Sylvester equations $A_{1}X-YB_{1}=C_{1},~A_{2}Z-YB_{2}=C_{2}$ and $A_{1}X-YB_{1}=C_{1},~A_{2}Y-ZB_{2}=C_{2}$ are considered, where $Z$ is $\phi$-Hermitian. Some practical necessary and sufficient conditions for the existence of a solution $(X,Y,Z)$ to those systems in terms of the ranks and Moore-Penrose inverses of the given coefficient matrices are presented. Moreover, the general solutions to these systems are explicitly given when they are solvable. Some numerical examples are provided to illustrate the main results.

abs_vol32_pp475-499.pdf (138 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.